TY - JOUR
T1 - Zebrafish model of neuroblastoma metastasis
AU - Her, Zuag Paj
AU - Yeo, Kok Siong
AU - Howe, Cassie
AU - Levee, Taylor
AU - Zhu, Shizhen
N1 - Funding Information:
This work was supported by a grant R01 CA240323 (S.Z.) from the National Cancer Institute; a grant W81XWH-17-1-0498 (S.Z.) from the United States Department of Defense (DoD); a V Scholar award from the V Foundation for Cancer Research (S.Z.) and a Platform Grant from the Mayo Center for Biomedical Discovery (S.Z.); and supports from the Mayo Clinic Cancer Center and Center for Individualized Medicine (S.Z.).
Publisher Copyright:
© 2021 JoVE Journal of Visualized Experiments.
PY - 2021/3
Y1 - 2021/3
N2 - Zebrafish has emerged as an important animal model to study human diseases, especially cancer. Along with the robust transgenic and genome editing technologies applied in zebrafish modeling, the ease of maintenance, high-yield productivity, and powerful live imaging altogether make the zebrafish a valuable model system to study metastasis and cellular and molecular bases underlying this process in vivo. The first zebrafish neuroblastoma (NB) model of metastasis was developed by overexpressing two oncogenes, MYCN and LMO1, under control of the dopamine-beta-hydroxylase (dβh) promoter. Co-overexpressed MYCN and LMO1 led to the reduced latency and increased penetrance of neuroblastomagenesis, as well as accelerated distant metastasis of tumor cells. This new model reliably reiterates many key features of human metastatic NB, including involvement of clinically relevant and metastasis-associated genetic alterations; natural and spontaneous development of metastasis in vivo; and conserved sites of metastases. Therefore, the zebrafish model possesses unique advantages to dissect the complex process of tumor metastasis in vivo.
AB - Zebrafish has emerged as an important animal model to study human diseases, especially cancer. Along with the robust transgenic and genome editing technologies applied in zebrafish modeling, the ease of maintenance, high-yield productivity, and powerful live imaging altogether make the zebrafish a valuable model system to study metastasis and cellular and molecular bases underlying this process in vivo. The first zebrafish neuroblastoma (NB) model of metastasis was developed by overexpressing two oncogenes, MYCN and LMO1, under control of the dopamine-beta-hydroxylase (dβh) promoter. Co-overexpressed MYCN and LMO1 led to the reduced latency and increased penetrance of neuroblastomagenesis, as well as accelerated distant metastasis of tumor cells. This new model reliably reiterates many key features of human metastatic NB, including involvement of clinically relevant and metastasis-associated genetic alterations; natural and spontaneous development of metastasis in vivo; and conserved sites of metastases. Therefore, the zebrafish model possesses unique advantages to dissect the complex process of tumor metastasis in vivo.
UR - http://www.scopus.com/inward/record.url?scp=85103609564&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103609564&partnerID=8YFLogxK
U2 - 10.3791/62416
DO - 10.3791/62416
M3 - Article
C2 - 33779609
AN - SCOPUS:85103609564
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 169
M1 - e62416
ER -