Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Single cell sequencing is a technology capable of analyzing the genome of a single cell within a population. This technology is mostly integrated with microfluidics for precise cell manipulation and fluid handling. So far, most of the microfluidic-based single cell genomic studies have been focused on lab-cultured species or cell lines that are relatively easy to handle following standard microfluidic-based protocols without additional adjustments. The major challenges for performing single cell sequencing on clinical samples is the complex nature of the samples which requires additional sample processing steps to obtain intact single cells of interest without using amplification-inhibitive agents. Fluorescent-activated cell sorting is a common option to obtain single cells from clinical samples for single cell applications but requires >100 000 viable cells in suspension and the need for specialized laboratory and personnel. In this work, we present a protocol that can be used to obtain intact epithelial cells from snap-frozen postsurgical human endometrial tissues for single cell whole genome amplification. Our protocol includes sample thawing, cell dissociation, and labeling for genome amplification of targeted cells. Between 80% and 100% of single cell replicates lead to >25 ng of DNA after amplification with no measurable contamination, sufficient for downstream sequencing.

Original languageEnglish (US)
Article number034109
JournalBiomicrofluidics
Volume13
Issue number3
DOIs
StatePublished - May 1 2019

ASJC Scopus subject areas

  • Molecular Biology
  • General Materials Science
  • Genetics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform'. Together they form a unique fingerprint.

Cite this