Whole Exome Sequencing Reveals Novel Variants in Unexplained Erythrocytosis

Harshit Khurana, Babylakshmi Muthusamy, Uday Yanamandra, Kishore Garapati, Harikrishnan Premdeep, Shankar Subramanian, Akhilesh Pandey

Research output: Contribution to journalArticlepeer-review

Abstract

Erythrocytosis is characterized by an increase in red cells in peripheral blood. Polycythemia vera, the commonest primary erythrocytosis, results from pathogenic variants in JAK2 in ∼98% of cases. Although some variants have been reported in JAK2-negative polycythemia, the causal genetic variants remain unidentified in ∼80% of cases. To discover genetic variants in unexplained erythrocytosis, we performed whole exome sequencing in 27 patients with JAK2-negative polycythemia after excluding the presence of any mutations in genes previously associated with erythrocytosis (EPOR, VHL, PHD2, EPAS1, HBA, and HBB). We found that the majority of patients (25/27) had variants in genes involved in epigenetic processes, including TET2 and ASXL1 or in genes related to hematopoietic signaling such as MPL and GFIB. Based on computational analysis, we believe that variants identified in 11 patients in this study could be pathogenic although functional studies will be required for confirmation. To our knowledge, this is the largest study reporting novel variants in individuals with unexplained erythrocytosis. Our results suggest that genes involved in epigenetic processes and hematopoietic signaling pathways are likely associated with unexplained erythrocytosis in individuals lacking JAK2 mutations. With very few previous studies targeting JAK2-negative polycythemia patients to identify underlying variants, this study opens a new avenue in evaluating and managing JAK2-negative polycythemia.

Original languageEnglish (US)
Pages (from-to)299-304
Number of pages6
JournalOMICS A Journal of Integrative Biology
Volume27
Issue number7
DOIs
StatePublished - Jul 1 2023

Keywords

  • JAK2-negative
  • diagnostics
  • mutations
  • personalized medicine
  • polycythemia
  • whole exome sequencing

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Whole Exome Sequencing Reveals Novel Variants in Unexplained Erythrocytosis'. Together they form a unique fingerprint.

Cite this