Ultra-high resolution photon-counting detector CT reconstruction using spectral prior image constrained compressed-sensing (UHR-SPICCS)

Kishore Rajendran, Shengzhen Tao, Dilbar Abdurakhimova, Shuai Leng, Cynthia McCollough

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations


Photon-counting detector based CT (PCD-CT) enables dose efficient high resolution imaging, in addition to providing multi-energy information. This allows better delineation of anatomical structures crucial for several clinical applications ranging from temporal bone imaging to pulmonary nodule visualization. Due to the smaller detector pixel sizes required for high resolution imaging, the PCD-CT images suffer from higher noise levels. The image quality is further degraded in narrow energy bins as a consequence of low photon counts. This limits the potential benefits that high-resolution PCD-CT could offer. Conventional reconstruction techniques such as the filtered back projection (FBP) have poor performance when reconstructing noisy CT projection data. To enable low noise multi-energy reconstructions, we employed a spectral prior image constrained compressed sensing (SPICCS) framework that exploits the spatio-spectral redundancy in the multi-energy acquisitions. We demonstrated noise reduction in narrow energy bins without losing energy-specific attenuation information and spatial resolution. We scanned an anthropomorphic head phantom, and a euthanized pig using our whole-body prototype PCD-CT system in the ultra-high resolution mode at 120 kV. Image reconstructions were performed using SPICCS and compared with conventional FBP. Noise reduction of 18 to 46% was noticed in narrow energy bins corresponding to 25 - 65 keV and 65 - 120 keV, while the mean CT number was preserved. Spatial resolution measurement showed similar modulation transfer function (MTF) values between FBP and SPICCS, demonstrating preservation of spatial resolution.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Joseph Y. Lo
ISBN (Electronic)9781510616356
StatePublished - 2018
EventMedical Imaging 2018: Physics of Medical Imaging - Houston, United States
Duration: Feb 12 2018Feb 15 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2018: Physics of Medical Imaging
Country/TerritoryUnited States


  • Photon-counting detectors
  • compressed sensing
  • computed tomography
  • image reconstruction
  • multi-energy
  • prior image constrained compressed sensing
  • ultra-high resolution

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Ultra-high resolution photon-counting detector CT reconstruction using spectral prior image constrained compressed-sensing (UHR-SPICCS)'. Together they form a unique fingerprint.

Cite this