Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model

Janaiah Kota, Raghu R. Chivukula, Kathryn A. O'Donnell, Erik A. Wentzel, Chrystal L. Montgomery, Hun Way Hwang, Tsung Cheng Chang, Perumal Vivekanandan, Michael Torbenson, K. Reed Clark, Jerry R. Mendell, Joshua T. Mendell

Research output: Contribution to journalArticlepeer-review

1402 Scopus citations


Therapeutic strategies based on modulation of microRNA (miRNA) activity hold great promise due to the ability of these small RNAs to potently influence cellular behavior. In this study, we investigated the efficacy of a miRNA replacement therapy for liver cancer. We demonstrate that hepatocellular carcinoma (HCC) cells exhibit reduced expression of miR-26a, a miRNA that is normally expressed at high levels in diverse tissues. Expression of this miRNA in liver cancer cells in vitro induces cell-cycle arrest associated with direct targeting of cyclins D2 and E2. Systemic administration of this miRNA in a mouse model of HCC using adeno-associated virus (AAV) results in inhibition of cancer cell proliferation, induction of tumor-specific apoptosis, and dramatic protection from disease progression without toxicity. These findings suggest that delivery of miRNAs that are highly expressed and therefore tolerated in normal tissues but lost in disease cells may provide a general strategy for miRNA replacement therapies.

Original languageEnglish (US)
Pages (from-to)1005-1017
Number of pages13
Issue number6
StatePublished - Jun 12 2009


  • RNA

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology


Dive into the research topics of 'Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model'. Together they form a unique fingerprint.

Cite this