The trifecta of single-cell, systems-biology, and machine-learning approaches

Taylor M. Weiskittel, Cristina Correia, Grace T. Yu, Choong Yong Ung, Scott H. Kaufmann, Daniel D. Billadeau, Hu Li

Research output: Contribution to journalReview articlepeer-review


Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.

Original languageEnglish (US)
Article number1098
Issue number7
StatePublished - Jul 2021


  • Machine learning
  • Single-cell omics
  • Single-cell systems biology
  • Systems biology

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'The trifecta of single-cell, systems-biology, and machine-learning approaches'. Together they form a unique fingerprint.

Cite this