Spectral CT imaging of human osteoarthritic cartilage via quantitative assessment of glycosaminoglycan content using multiple contrast agents

Kenzie Baer, Sandra Kieser, Ben Schon, Kishore Rajendran, Timen Ten Harkel, Mohsen Ramyar, Caroline Löbker, Christopher Bateman, Anthony Butler, Aamir Raja, Gary Hooper, Nigel Anderson, Tim Woodfield

Research output: Contribution to journalArticlepeer-review

Abstract

Detection of early osteoarthritis to stabilize or reverse the damage to articular cartilage would improve patient function, reduce disability, and limit the need for joint replacement. In this study, we investigated nondestructive photon-processing spectral computed tomography (CT) for the quantitative measurement of the glycosaminoglycan (GAG) content compared to destructive histological and biochemical assay techniques in normal and osteoarthritic tissues. Cartilage-bone cores from healthy bovine stifles were incubated in 50% ioxaglate (Hexabrix®) or 100% gadobenate dimeglumine (MultiHance®). A photon-processing spectral CT (MARS) scanner with a CdTe-Medipix3RX detector imaged samples. Calibration phantoms of ioxaglate and gadobenate dimeglumine were used to determine iodine and gadolinium concentrations from photon-processing spectral CT images to correlate with the GAG content measured using a dimethylmethylene blue assay. The zonal distribution of GAG was compared between photon-processing spectral CT images and histological sections. Furthermore, discrimination and quantification of GAG in osteoarthritic human tibial plateau tissue using the same contrast agents were demonstrated. Contrast agent concentrations were inversely related to the GAG content. The GAG concentration increased from 25 μg/ml (85 mg/ml iodine or 43 mg/ml gadolinium) in the superficial layer to 75 μg/ml (65 mg/ml iodine or 37 mg/ml gadolinium) in the deep layer of healthy bovine cartilage. Deep zone articular cartilage could be distinguished from subchondral bone by utilizing the material decomposition technique. Photon-processing spectral CT images correlated with histological sections in healthy and osteoarthritic tissues. Post-imaging material decomposition was able to quantify the GAG content and distribution throughout healthy and osteoarthritic cartilage using Hexabrix® and MultiHance® while differentiating the underlying subchondral bone.

Original languageEnglish (US)
Article number026101
JournalAPL Bioengineering
Volume5
Issue number2
DOIs
StatePublished - 2021

ASJC Scopus subject areas

  • Bioengineering
  • Biomedical Engineering
  • Biomaterials
  • Biophysics

Fingerprint

Dive into the research topics of 'Spectral CT imaging of human osteoarthritic cartilage via quantitative assessment of glycosaminoglycan content using multiple contrast agents'. Together they form a unique fingerprint.

Cite this