TY - JOUR
T1 - Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in lupus patient monocytes
AU - Ghodke-Puranik, Yogita
AU - Jin, Zhongbo
AU - Zimmerman, Kip D.
AU - Ainsworth, Hannah C.
AU - Fan, Wei
AU - Jensen, Mark A.
AU - Dorschner, Jessica M.
AU - Vsetecka, Danielle M.
AU - Amin, Shreyasee
AU - Makol, Ashima
AU - Ernste, Floranne
AU - Osborn, Thomas
AU - Moder, Kevin
AU - Chowdhary, Vaidehi
AU - Langefeld, Carl D.
AU - Niewold, Timothy B.
N1 - Funding Information:
The authors thank the funding sources noted above and the patients for their participation in this study.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution. Methods: Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14++CD16− CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles. Results: The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 expression pattern in public data sets. Conclusions: We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.
AB - Background: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution. Methods: Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14++CD16− CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles. Results: The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 expression pattern in public data sets. Conclusions: We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.
UR - http://www.scopus.com/inward/record.url?scp=85120178158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120178158&partnerID=8YFLogxK
U2 - 10.1186/s13075-021-02660-2
DO - 10.1186/s13075-021-02660-2
M3 - Article
C2 - 34847931
AN - SCOPUS:85120178158
SN - 1478-6354
VL - 23
JO - Arthritis Research and Therapy
JF - Arthritis Research and Therapy
IS - 1
M1 - 290
ER -