Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression

Yu Yamazaki, Mitsuru Shinohara, Motoko Shinohara, Akari Yamazaki, Melissa E. Murray, Amanda M. Liesinger, Michael G. Heckman, Elizabeth R. Lesser, Joseph E. Parisi, Ronald C. Petersen, Dennis W. Dickson, Takahisa Kanekiyo, Guojun Bu

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

While the accumulation and aggregation of amyloid-β and tau are central events in the pathogenesis of Alzheimer's disease, there is increasing evidence that cerebrovascular pathology is also abundant in Alzheimer's disease brains. In brain capillaries, endothelial cells are connected closely with one another through transmembrane tight junction proteins forming the blood-brain barrier. Because the blood-brain barrier tightly regulates the exchange of molecules between brain and blood and maintains brain homeostasis, its impairment is increasingly recognized as a critical factor contributing to Alzheimer's disease pathogenesis. However, the pathological relationship between blood-brain barrier properties and Alzheimer's disease progression in the human brain is not fully understood. In this study, we show that the loss of cortical tight junction proteins is a common event in Alzheimer's disease, and is correlated with synaptic degeneration. By quantifying the amounts of major tight junction proteins, claudin-5 and occludin, in 12 brain regions dissected from post-mortem brains of normal ageing (n = 10), pathological ageing (n = 14) and Alzheimer's disease patients (n = 19), we found that they were selectively decreased in cortical areas in Alzheimer's disease. Cortical tight junction proteins were decreased in association with the Braak neurofibrillary tangle stage. There was also a negative correlation between the amount of tight junction proteins and the amounts of insoluble Alzheimer's disease-related proteins, in particular amyloid-β 40, in cortical areas. In addition, the amount of tight junction proteins in these areas correlated positively with those of synaptic markers. Thus, loss of cortical tight junction proteins in Alzheimer's disease is associated with insoluble amyloid-β 40 and loss of synaptic markers. Importantly, the positive correlation between claudin-5 and synaptic markers, in particular synaptophysin, was present independent of insoluble amyloid-β 40, amyloid-β 42 and tau values, suggesting that loss of cortical tight junction proteins and synaptic degeneration is present, at least in part, independent of insoluble Alzheimer's disease-related proteins. Collectively, these results indicate that loss of tight junction proteins occurs predominantly in the neocortex during Alzheimer's disease progression. Further, our findings provide a neuropathological clue as to how endothelial tight junction pathology may contribute to Alzheimer's disease pathogenesis in both synergistic and additive manners to typical amyloid-β and tau pathologies.

Original languageEnglish (US)
Pages (from-to)1077-1092
Number of pages16
JournalBrain
Volume142
Issue number4
DOIs
StatePublished - Apr 1 2019

Keywords

  • blood-brain barrier
  • claudin-5
  • neurovascular unit
  • occludin
  • tight junction

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Selective loss of cortical endothelial tight junction proteins during Alzheimer's disease progression'. Together they form a unique fingerprint.

Cite this