Real-time single frame tomosynthesis: Prototype and radiotherapy applications

Scott S. Hsieh, Lydia W. Ng, Minsong Cao, Percy Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In conventional tomosynthesis, the x-ray source or detector move relative to the patient so that anatomy at a target depth is focused and other anatomy is blurred. We propose a real-time single frame tomosynthesis design using a distributed source array and a large flat-panel detector. Each element in the source array energizes simultaneously, and the beam is collimated down so that it passes through isocenter and is received in a small sector of the detector. The detector receives multiple non-overlapping x-ray images simultaneously, and averages these to blur anatomy outside the target depth. Reconstruction occurs at the readout rate of the detector, typically 30 frames per second. Single frame tomosynthesis therefore increases temporal resolution at the expense of field of view and number of views. An application of single frame tomosynthesis is the monitoring of lung tumors during stereotactic body radiotherapy (SBRT). External biplane fluoroscopic systems, presently used for management of cranial lesions, could be repurposed with tomosynthesis at moderate cost. In a reader study with two radiation oncologists evaluating 60 simulated cases of lung SBRT, 90% were deemed acceptable for motion management with tomosynthesis compared to 53% with fluoroscopy. We constructed a prototype system using four portable x-ray sources and a fixed collimator and frame and imaged an anthropomorphic lung phantom with a spherical lung nodule embedded, and found that the prototype system showed displayed the lung nodule with better contrast than fluoroscopy.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2023
Subtitle of host publicationPhysics of Medical Imaging
EditorsLifeng Yu, Rebecca Fahrig, John M. Sabol
PublisherSPIE
ISBN (Electronic)9781510660311
DOIs
StatePublished - 2023
EventMedical Imaging 2023: Physics of Medical Imaging - San Diego, United States
Duration: Feb 19 2023Feb 23 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12463
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2023: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period2/19/232/23/23

Keywords

  • ablative radiotherapy
  • motion management
  • tomosynthesis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Real-time single frame tomosynthesis: Prototype and radiotherapy applications'. Together they form a unique fingerprint.

Cite this