Putative photoacoustic damage in skin induced by pulsed arf excimer laser

Shinichi Watanabe, Thomas J. Flotte, Daniel J. McAuliffe, Steven L. Jacques

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


Argon-fluoride excimer laser ablation of guinea pig stratum corneum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting that photo-acoustic waves have a role in tissue damage. Laser irradiation (193 nm, 14-ns pulse) at two different radiant exposures, 62 and 156 mJ/cm2 per pulse, was used to ablate the 15-μm-thick stratum corneum of the skin. Light and electron microscopy of immediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 μm, respectively, below the ablation site. These depths are far in excess of the optical penetration depth of 193-nm light (1/e depth = 1.5μm). The damage is unlikely to be due to a photochemical mechanism because (a) the photons will not penetrate to these depths, (b) it is a long distance for toxic photoproducts to diffuse, and (c) damage is proportional to laser pulse intensity and not the total dose that accumulates in the residual tissue; therefore, reciprocity does not hold. Damage due to a thermal mechanism is not expected because there is not sufficient energy deposited in the tissue to cause significant heating at such depths. The damage is most likely due to a photoacoustic mechanism because (a) photoacoustic waves can propagate deep into tissue, (b) the depth of damage increases with increasing laser pulse intensity rather than with increasing total residual energy, and (c) the effects are immediate. These effects should be considered in the evaluation of short pulse, high peak power laser-tissue interactions.

Original languageEnglish (US)
Pages (from-to)761-766
Number of pages6
JournalJournal of Investigative Dermatology
Issue number5
StatePublished - May 1988

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Dermatology
  • Cell Biology


Dive into the research topics of 'Putative photoacoustic damage in skin induced by pulsed arf excimer laser'. Together they form a unique fingerprint.

Cite this