Pressure Injury Prediction Model Using Advanced Analytics for At-Risk Hospitalized Patients

Quan Do, Kirill Lipatov, Kannan Ramar, Jenna Rasmusson, Brian W. Pickering, Vitaly Herasevich

Research output: Contribution to journalArticlepeer-review


Objective Analyzing pressure injury (PI) risk factors is complex because of multiplicity of associated factors and the multidimensional nature of this injury. The main objective of this study was to identify patients at risk of developing PI. Method Prediction performances of multiple popular supervised learning were tested. Together with the typical steps of a machine learning project, steps to prevent bias were carefully conducted, in which analysis of correlation covariance, outlier removal, confounding analysis, and cross-validation were used. Result The most accurate model reached an area under receiver operating characteristic curve of 99.7%. Ten-fold cross-validation was used to ensure that the results were generalizable. Random forest and decision tree had the highest prediction accuracy rates of 98%. Similar accuracy rate was obtained on the validation cohort. Conclusions We developed a prediction model using advanced analytics to predict PI in at-risk hospitalized patients. This will help address appropriate interventions before the patients develop a PI.

Original languageEnglish (US)
Pages (from-to)E1083-E1089
JournalJournal of patient safety
Issue number7
StatePublished - Oct 1 2022


  • clinical decision making
  • clinical predictive model
  • pressure injury
  • pressure ulcer
  • risk factors analysis

ASJC Scopus subject areas

  • Leadership and Management
  • Public Health, Environmental and Occupational Health


Dive into the research topics of 'Pressure Injury Prediction Model Using Advanced Analytics for At-Risk Hospitalized Patients'. Together they form a unique fingerprint.

Cite this