TY - JOUR
T1 - Positive Predictive Value of Myelin Oligodendrocyte Glycoprotein Autoantibody Testing
AU - Sechi, Elia
AU - Buciuc, Marina
AU - Pittock, Sean J.
AU - Chen, John J.
AU - Fryer, James P.
AU - Jenkins, Sarah M.
AU - Budhram, Adrian
AU - Weinshenker, Brian G.
AU - Lopez-Chiriboga, A. Sebastian
AU - Tillema, Jan Mendelt
AU - McKeon, Andrew
AU - Mills, John R.
AU - Tobin, W. Oliver
AU - Flanagan, Eoin P.
N1 - Funding Information:
receiving grants, personal fees paid to Mayo Clinic, and nonfinancial support from Alexion Pharmaceuticals Inc and MedImmune Inc/Viela Bio; receiving personal fees from Genentech/Roche, UCB, and Astellas, outside the submitted work; holding patent 8,889,102 (application 12-678350) issued and patent 9,891,219B2 (application 12-573942) issued; and serving as a director of the Neuroimmunology Laboratory at Mayo Clinic. He receives no royalties from the sale of myelin oligodendrocyte glycoprotein–IgG1 testing at the Neuroimmunology Laboratory; however, Mayo Clinic Laboratories does receive revenue for conducting such tests. Dr Weinshenker reported personal fees from Alexion and Viela Bio for serving on attack adjudication committees for clinical trials in neuromyelitis optica; consulting fees from Chugai, Genentech, and Mitsubishi Tanabe regarding clinical trials for neuromyelitis optica; and consulting and speaking fees from Roche regarding clinical trials for neuromyelitis optica, outside the submitted work. In addition, Dr Weinshenker has a patent for neuromyelitis optica–IgG for a diagnostic test of neuromyelitis optica and associated conditions with royalties paid from RSR Ltd, Oxford University, Hospices Civil de Lyon, and MVZ Labor PD Dr Volkmann und Kollegen GbR. Dr Tobin has received research funding from Mallinckrodt Inc, the Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, and the National Institutes of Health (grant 1R01NS113803-01A1) outside the submitted work. Dr McKeon received research funding from Alexion, Grifols, and MedImmune and has patents pending for the following IgGs as biomarkers of autoimmune neurological disorders: Septin-5, Septin-7, Kelch-like protein 11, GFAP, PDE10A, and MAP1B. Dr McKeon also reported grants from EUROIMMUN and Grifols outside the submitted work. Dr Flanagan reported receiving research support from MedImmune/Viela Bio as a site principal investigator in a placebo-controlled randomized clinical trial of inebilizumab (a CD19 inhibitor) in neuromyelitis optica spectrum disorders, as well as funding from the National Institutes of Health (grant R01NS113828). Dr Mills reported holding patent 10,267,806, with royalties paid, from the Binding Site. No other disclosures were reported.
Funding Information:
Funding/Support: This work was supported by
Publisher Copyright:
© 2021 American Medical Association. All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - Importance: Myelin oligodendrocyte glycoprotein-IgG1-associated disorder (MOGAD) is a distinct central nervous system-demyelinating disease. Positive results on MOG-IgG1 testing by live cell-based assays can confirm a MOGAD diagnosis, but false-positive results may occur. Objective: To determine the positive predictive value (PPV) of MOG-IgG1 testing in a tertiary referral center. Design, Setting, and Participants: This diagnostic study was conducted over 2 years, from January 1, 2018, through December 31, 2019. Patients in the Mayo Clinic who were consecutively tested for MOG-IgG1 by live cell-based flow cytometry during their diagnostic workup were included. Patients without research authorization were excluded. Main Outcomes and Measures: Medical records of patients who were tested were initially reviewed by 2 investigators blinded to MOG-IgG1 serostatus, and pretest probability was classified as high or low (suggestive of MOGAD or not). Testing of MOG-IgG1 used a live-cell fluorescence-activated cell-sorting assay; an IgG binding index value of 2.5 or more with an end titer of 1:20 or more was considered positive. Cases positive for MOG-IgG1 were independently designated by 2 neurologists as true-positive or false-positive results at last follow-up, based on current international recommendations on diagnosis or identification of alternative diagnoses; consensus was reached for cases in which disagreement existed. Results: A total of 1617 patients were tested, and 357 were excluded. Among 1260 included patients tested over 2 years, the median (range) age at testing was 46 (0-98) years, and 792 patients were female (62.9%). A total of 92 of 1260 (7.3%) were positive for MOG-IgG1. Twenty-six results (28%) were designated as false positive by the 2 raters, with an overall agreement on 91 of 92 cases (99%) for true and false positivity. Alternative diagnoses included multiple sclerosis (n = 11), infarction (n = 3), B12deficiency (n = 2), neoplasia (n = 2), genetically confirmed adrenomyeloneuropathy (n = 1), and other conditions (n = 7). The overall PPV (number of true-positive results/total positive results) was 72% (95% CI, 62%-80%) and titer dependent (PPVs: 1:1000, 100%; 1:100, 82%; 1:20-40, 51%). The median titer was higher with true-positive results (1:100 [range, 1:20-1:10000]) than false-positive results (1:40 [range, 1:20-1:100]; P <.001). The PPV was higher for children (94% [95% CI, 72%-99%]) vs adults (67% [95% CI, 56%-77%]) and patients with high pretest probability (85% [95% CI, 76%-92%]) vs low pretest probability (12% [95% CI, 3%-34%]). The specificity of MOG-IgG1 testing was 97.8%. Conclusions and Relevance: This study confirms MOG-IgG1 as a highly specific biomarker for MOGAD, but when using a cutoff of 1:20, it has a low PPV of 72%. Caution is advised in the interpretation of low titers among patients with atypical phenotypes, because ordering MOG-IgG1 in low pretest probability situations will increase the proportion of false-positive results..
AB - Importance: Myelin oligodendrocyte glycoprotein-IgG1-associated disorder (MOGAD) is a distinct central nervous system-demyelinating disease. Positive results on MOG-IgG1 testing by live cell-based assays can confirm a MOGAD diagnosis, but false-positive results may occur. Objective: To determine the positive predictive value (PPV) of MOG-IgG1 testing in a tertiary referral center. Design, Setting, and Participants: This diagnostic study was conducted over 2 years, from January 1, 2018, through December 31, 2019. Patients in the Mayo Clinic who were consecutively tested for MOG-IgG1 by live cell-based flow cytometry during their diagnostic workup were included. Patients without research authorization were excluded. Main Outcomes and Measures: Medical records of patients who were tested were initially reviewed by 2 investigators blinded to MOG-IgG1 serostatus, and pretest probability was classified as high or low (suggestive of MOGAD or not). Testing of MOG-IgG1 used a live-cell fluorescence-activated cell-sorting assay; an IgG binding index value of 2.5 or more with an end titer of 1:20 or more was considered positive. Cases positive for MOG-IgG1 were independently designated by 2 neurologists as true-positive or false-positive results at last follow-up, based on current international recommendations on diagnosis or identification of alternative diagnoses; consensus was reached for cases in which disagreement existed. Results: A total of 1617 patients were tested, and 357 were excluded. Among 1260 included patients tested over 2 years, the median (range) age at testing was 46 (0-98) years, and 792 patients were female (62.9%). A total of 92 of 1260 (7.3%) were positive for MOG-IgG1. Twenty-six results (28%) were designated as false positive by the 2 raters, with an overall agreement on 91 of 92 cases (99%) for true and false positivity. Alternative diagnoses included multiple sclerosis (n = 11), infarction (n = 3), B12deficiency (n = 2), neoplasia (n = 2), genetically confirmed adrenomyeloneuropathy (n = 1), and other conditions (n = 7). The overall PPV (number of true-positive results/total positive results) was 72% (95% CI, 62%-80%) and titer dependent (PPVs: 1:1000, 100%; 1:100, 82%; 1:20-40, 51%). The median titer was higher with true-positive results (1:100 [range, 1:20-1:10000]) than false-positive results (1:40 [range, 1:20-1:100]; P <.001). The PPV was higher for children (94% [95% CI, 72%-99%]) vs adults (67% [95% CI, 56%-77%]) and patients with high pretest probability (85% [95% CI, 76%-92%]) vs low pretest probability (12% [95% CI, 3%-34%]). The specificity of MOG-IgG1 testing was 97.8%. Conclusions and Relevance: This study confirms MOG-IgG1 as a highly specific biomarker for MOGAD, but when using a cutoff of 1:20, it has a low PPV of 72%. Caution is advised in the interpretation of low titers among patients with atypical phenotypes, because ordering MOG-IgG1 in low pretest probability situations will increase the proportion of false-positive results..
UR - http://www.scopus.com/inward/record.url?scp=85105210952&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105210952&partnerID=8YFLogxK
U2 - 10.1001/jamaneurol.2021.0912
DO - 10.1001/jamaneurol.2021.0912
M3 - Article
C2 - 33900394
AN - SCOPUS:85105210952
SN - 2168-6149
VL - 78
SP - 741
EP - 746
JO - JAMA neurology
JF - JAMA neurology
IS - 6
ER -