Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis

Cesare Hassan, Marco Spadaccini, Andrea Iannone, Roberta Maselli, Manol Jovani, Viveksandeep Thoguluva Chandrasekar, Giulio Antonelli, Honggang Yu, Miguel Areia, Mario Dinis-Ribeiro, Pradeep Bhandari, Prateek Sharma, Douglas K. Rex, Thomas Rösch, Michael Wallace, Alessandro Repici

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations


Background and Aims: One-fourth of colorectal neoplasia are missed at screening colonoscopy, representing the main cause of interval colorectal cancer. Deep learning systems with real-time computer-aided polyp detection (CADe) showed high accuracy in artificial settings, and preliminary randomized controlled trials (RCTs) reported favorable outcomes in the clinical setting. The aim of this meta-analysis was to summarize available RCTs on the performance of CADe systems in colorectal neoplasia detection. Methods: We searched MEDLINE, EMBASE, and Cochrane Central databases until March 2020 for RCTs reporting diagnostic accuracy of CADe systems in the detection of colorectal neoplasia. The primary outcome was pooled adenoma detection rate (ADR), and secondary outcomes were adenoma per colonoscopy (APC) according to size, morphology, and location; advanced APC; polyp detection rate; polyps per colonoscopy; and sessile serrated lesions per colonoscopy. We calculated risk ratios (RRs), performed subgroup and sensitivity analyses, and assessed heterogeneity and publication bias. Results: Overall, 5 randomized controlled trials (4354 patients) were included in the final analysis. Pooled ADR was significantly higher in the CADe group than in the control group (791/2163 [36.6%] vs 558/2191 [25.2%]; RR, 1.44; 95% confidence interval [CI], 1.27-1.62; P <.01; I2 = 42%). APC was also higher in the CADe group compared with control (1249/2163 [.58] vs 779/2191 [.36]; RR, 1.70; 95% CI, 1.53-1.89; P <.01; I2 = 33%). APC was higher for ≤5-mm (RR, 1.69; 95% CI, 1.48-1.84), 6- to 9-mm (RR, 1.44; 95% CI, 1.19-1.75), and ≥10-mm adenomas (RR, 1.46; 95% CI, 1.04-2.06) and for proximal (RR, 1.59; 95% CI, 1.34-1.88), distal (RR, 1.68; 95% CI, 1.50-1.88), flat (RR, 1.78; 95% CI, 1.47-2.15), and polypoid morphology (RR, 1.54; 95% CI, 1.40-1.68). Regarding histology, CADe resulted in a higher sessile serrated lesion per colonoscopy (RR, 1.52; 95% CI, 1.14-2.02), whereas a nonsignificant trend for advanced ADR was found (RR, 1.35; 95% CI,.74-2.47; P =.33; I2 = 69%). Level of evidence for RCTs was graded as moderate. Conclusions: According to available evidence, the incorporation of artificial intelligence as aid for detection of colorectal neoplasia results in a significant increase in the detection of colorectal neoplasia, and such effect is independent from main adenoma characteristics.

Original languageEnglish (US)
Pages (from-to)77-85.e6
JournalGastrointestinal endoscopy
Issue number1
StatePublished - Jan 2021

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Gastroenterology


Dive into the research topics of 'Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis'. Together they form a unique fingerprint.

Cite this