Pancreas-specific CHRM3 activation causes pancreatitis in mice

Jianhua Wan, Jiale Wang, Larry E. Wagner, Oliver H. Wang, Fu Gui, Jiaxiang Chen, Xiaohui Zhu, Ashley N. Haddock, Brandy H. Edenfield, Brian Haight, Debabrata Mukhopadhyay, Ying Wang, David I. Yule, Yan Bi, Baoan Ji

Research output: Contribution to journalArticlepeer-review


Hyperstimulation of the cholecystokinin 1 receptor (CCK1R), a G protein–coupled receptor (GPCR), in pancreatic acinar cells is commonly used to induce pancreatitis in rodents. Human pancreatic acinar cells lack CCK1R but express cholinergic receptor muscarinic 3 (M3R), another GPCR. To test whether M3R activation is involved in pancreatitis, a mutant M3R was conditionally expressed in pancreatic acinar cells in mice. This mutant receptor loses responsiveness to its native ligand, acetylcholine, but can be activated by an inert small molecule, clozapine-N-oxide (CNO). Intracellular calcium and amylase were elicited by CNO in pancreatic acinar cells isolated from mutant M3R mice but not WT mice. Similarly, acute pancreatitis (AP) could be induced by a single injection of CNO in the transgenic mice but not WT mice. Compared with the cerulein-induced AP, CNO caused more widespread acinar cell death and inflammation. Furthermore, chronic pancreatitis developed at 4 weeks after 3 episodes of CNO-induced AP. In contrast, in mice with 3 recurrent episodes of cerulein-included AP, pancreas histology was restored in 4 weeks. Furthermore, the M3R antagonist ameliorated the severity of cerulein-induced AP in WT mice. We conclude that M3R activation can cause the pathogenesis of pancreatitis. This model may provide an alternative approach for pancreatitis research.

Original languageEnglish (US)
Article numbere132585
JournalJCI Insight
Issue number17
StatePublished - Sep 8 2021

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Pancreas-specific CHRM3 activation causes pancreatitis in mice'. Together they form a unique fingerprint.

Cite this