NFAT1 Orchestrates Spinal Microglial Transcription and Promotes Microglial Proliferation via c-MYC Contributing to Nerve Injury-Induced Neuropathic Pain

Bao Chun Jiang, Ting Yu Ding, Chang Yun Guo, Xue Hui Bai, De Li Cao, Xiao Bo Wu, Wei Lin Sha, Ming Jiang, Long Jun Wu, Yong Jing Gao

Research output: Contribution to journalArticlepeer-review

Abstract

Peripheral nerve injury-induced spinal microglial proliferation plays a pivotal role in neuropathic pain. So far, key intracellular druggable molecules involved in this process are not identified. The nuclear factor of activated T-cells (NFAT1) is a master regulator of immune cell proliferation. Whether and how NFAT1 modulates spinal microglial proliferation during neuropathic pain remain unknown. Here it is reported that NFAT1 is persistently upregulated in microglia after spinal nerve ligation (SNL), which is regulated by TET2-mediated DNA demethylation. Global or microglia-specific deletion of Nfat1 attenuates SNL-induced pain and decreases excitatory synaptic transmission of lamina II neurons. Furthermore, deletion of Nfat1 decreases microglial proliferation and the expression of multiple microglia-related genes, such as cytokines, transmembrane signaling receptors, and transcription factors. Particularly, SNL increases the binding of NFAT1 with the promoter of Itgam, Tnf, Il-1b, and c-Myc in the spinal cord. Microglia-specific overexpression of c-MYC induces pain hypersensitivity and microglial proliferation. Finally, inhibiting NFAT1 and c-MYC by intrathecal injection of inhibitor or siRNA alleviates SNL-induced neuropathic pain. Collectively, NFAT1 is a hub transcription factor that regulates microglial proliferation via c-MYC and guides the expression of the activated microglia genome. Thus, NFAT1 may be an effective target for treating neuropathic pain.

Original languageEnglish (US)
Article number2201300
JournalAdvanced Science
Volume9
Issue number27
DOIs
StatePublished - Sep 23 2022

Keywords

  • c-MYC
  • microglia
  • neuropathic pain
  • nuclear factor of activated T-cells (NFAT1)
  • proliferation

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'NFAT1 Orchestrates Spinal Microglial Transcription and Promotes Microglial Proliferation via c-MYC Contributing to Nerve Injury-Induced Neuropathic Pain'. Together they form a unique fingerprint.

Cite this