Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

Brittany M. Salazar, Emily A. Balczewski, Choong Yong Ung, Shizhen Zhu

Research output: Contribution to journalReview articlepeer-review

22 Scopus citations


Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

Original languageEnglish (US)
JournalInternational Journal of Molecular Sciences
Issue number1
StatePublished - Dec 27 2016


  • big data
  • computational modeling
  • drug repositioning
  • metastasis
  • networks
  • neuroblastoma
  • spontaneous regression

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Computer Science Applications
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology'. Together they form a unique fingerprint.

Cite this