Multi-energy CT imaging for large patients using dual-source photon-counting detector CT

Shengzhen Tao, Jeffrey F. Marsh, Ashley Tao, Greg J. Michalak, Kishore Rajendran, Cynthia H. McCollough, Shuai Leng

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Multi-energy CT imaging of large patients with conventional dual-energy (DE)-CT using an energy-integrating-detector (EID) is challenging due to photon starvation-induced image artifacts, especially in lower tube potential (80-100 kV) images. Here, we performed phantom experiments to investigate the performance of DECT for morbidly obese patients, using an iodine and water material decomposition task as an example, on an emulated dual-source (DS)-photon-counting-detector (PCD)-CT, and compared its performance with a clinical DS-EID-CT. An abdominal CT phantom with iodine inserts of different concentrations was wrapped with tissue-equivalent gel layers to emulate a large patient (50 cm lateral size). The phantom was scanned on a research whole-body single-source (SS)-PCD-CT (140 kV tube potential), a DS-PCD-CT (100/Sn140 kV; Sn140 indicates 140 kV with Sn filter), and a clinical DS-EID-CT (100/Sn140 kV) with the same radiation dose. Phantom scans were repeated five times on each system. The DS-PCD-CT acquisition was emulated by scanning twice on the SS-PCD-CT using different tube potentials. The multi-energy CT images acquired on each system were then reconstructed, and iodine- and water-specific images were generated using material decomposition. The root-mean-square-error (RMSE) between true and measured iodine concentrations were calculated for each system and compared. The images acquired on the DS-EID-CT showed severe artifacts, including ringing, reduced uniformity, and photon starvation artifacts, especially for low-energy images. These were largely reduced in DS-PCD-CT images. The CT number difference that was measured using regions-of-interest across field-of-view were reduced from 20.3 ± 0.9 (DS-EID-CT) to 2.5 ± 0.4 HU on DS-PCD-CT, showing improved image uniformity using DS-PCD-CT. Iodine RMSE was reduced from 3.42 ± 0.03 mg ml-1 (SS-PCD-CT) and 2.90 ± 0.03 mg ml-1 (DS-EID-CT) to 2.39 ± 0.05 mg ml-1 using DS-PCD-CT. DS-PCD-CT out-performed a clinical DS-EID-CT for iodine and water-based material decomposition on phantom emulating obese patients by reducing image artifacts and improving iodine quantification (RMSE reduced by 20%). With DS-PCD-CT, multi-energy CT can be performed on large patients that cannot be accommodated with current DECT.

Original languageEnglish (US)
Article number17NT01
JournalPhysics in medicine and biology
Volume65
Issue number17
DOIs
StatePublished - Sep 7 2020

Keywords

  • dual-source CT
  • large patient
  • material decomposition
  • multi-energy CT
  • photon counting detector

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Multi-energy CT imaging for large patients using dual-source photon-counting detector CT'. Together they form a unique fingerprint.

Cite this