Molecular characterization of the calcium release channel deficiency syndrome

David J. Tester, C. S. John Kim, Samantha K. Hamrick, Dan Ye, Bailey J. O’Hare, Hannah M. Bombei, Kristi K. Fitzgerald, Carla M. Haglund-Turnquist, Dianne L. Atkins, Luis A. Ochoa Nunez, Ian Law, Joel Temple, Michael J. Ackerman

Research output: Contribution to journalArticlepeer-review

Abstract

We identified a potentially novel homozygous duplication involving the promoter region and exons 1–4 of the gene encoding type 2 cardiac ryanodine receptor (RYR2) that is responsible for highly penetrant, exertion-related sudden deaths/cardiac arrests in the Amish community without an overt phenotype to suggest RYR2-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT). Homozygous RYR2 duplication (RYR2-DUP) induced pluripotent stem cell cardiomyocytes (iPSC-CMs) were generated from 2 unrelated patients. There was no difference in baseline Ca2+ handling measurements between WT-iPSC-CM and RYR2-DUP-iPSC-CM lines. However, compared with WT-iPSC-CMs, both patient lines demonstrated a dramatic reduction in caffeine-stimulated and isoproterenol-stimulated (ISO-stimulated) Ca2+ transient amplitude, suggesting RyR2 loss of function. There was a greater than 50% reduction in RYR2 transcript/RyR2 protein expression in both patient iPSC-CMs compared with WT. Delayed afterdepolarization was observed in the RYR2-DUP-iPSC-CMs but not in the WT-iPSC-CMs. Compared with WT-iPSC-CMs, there was significantly elevated arrhythmic activity in the RYR2-DUP-iPSC-CMs in response to ISO. Nadolol, propranolol, and flecainide reduced erratic activity by 8.5-fold, 6.8-fold, and 2.4-fold, respectively, from ISO challenge. Unlike the gain-of-function mechanism observed in RYR2-mediated CPVT, the homozygous multiexon duplication precipitated a dramatic reduction in RYR2 transcription and RyR2 protein translation, a loss of function in calcium handling, and a calcium-induced calcium release apparatus that is insensitive to catecholamines and caffeine.

Original languageEnglish (US)
Article numbere135952
JournalJCI Insight
Volume5
Issue number15
DOIs
StatePublished - Aug 6 2020

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Molecular characterization of the calcium release channel deficiency syndrome'. Together they form a unique fingerprint.

Cite this