Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane

Ravi Kumar, Tristan De Mooij, Timothy E. Peterson, Tatiana Kaptzan, Aaron J. Johnson, David J. Daniels, Ian F. Parney

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloidderived suppressor cells when normal monocytes are exposed to glioma conditioned media.

Original languageEnglish (US)
Article numbere0179012
JournalPloS one
Issue number6
StatePublished - Jun 2017

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane'. Together they form a unique fingerprint.

Cite this