Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma

James R. Tribble, Asta Vasalauskaite, Tony Redmond, Robert D. Young, Shoaib Hassan, Michael P. Fautsch, Frank Sengpiel, Pete A. Williams, James E. Morgan

Research output: Contribution to journalArticlepeer-review


Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure-function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure-function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.

Original languageEnglish (US)
Article numberfcz035
JournalBrain Communications
Issue number1
StatePublished - 2019


  • dendrite
  • electron microscopy
  • glaucoma
  • mitochondria
  • retinal ganglion cell

ASJC Scopus subject areas

  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma'. Together they form a unique fingerprint.

Cite this