Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel

Peter R. Strege, Luke M. Cowan, Constanza Alcaino, Amelia Mazzone, Christopher A. Ahern, Lorin S. Milescu, Gianrico Farrugia, Arthur Beyder

Research output: Contribution to journalArticlepeer-review

Abstract

Voltage-gated ion channels (VGICs) orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. VGICs are mechanosensitive, but the mechanisms of mechanosen-sitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokary-otic voltage-gated sodium channel from Bacillus halodurans, to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechano-sensitive eukaryotic sodium channel NaV1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic VGICs, including NaV1.5.

Original languageEnglish (US)
Article numbere79271
JournaleLife
Volume12
DOIs
StatePublished - Mar 2023

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel'. Together they form a unique fingerprint.

Cite this