@inproceedings{d27ecb84e9df4652b70082ef24410d1c,
title = "Mapping client messages to a unified data model with mixture feature embedding convolutional neural network",
abstract = "Data mapping among different data standards in health institutes is often a necessity when data exchanges occur among different institutes. However, no matter rule-based approaches or traditional machine learning methods, none of these methods have achieved satisfactory results yet. In this work, we propose a deep learning method, mixture feature embedding convolutional neural network (MfeCNN), to convert the data mapping to a multiple classification problem. Multi-modal features were extracted from different semantic space with a medical NLP package and powerful feature embeddings were generated by MfeCNN. Classes as many as ten were classified simultaneously by a fully-connected soft-max layer based on multi-view embedding. Experimental results show that our proposed MfeCNN achieved best results than traditional state-of-the-art machine learning models and also much better results than the convolutional neural network of only using bag-of-words as inputs.",
author = "Dingcheng Li and Peini Liu and Ming Huang and Yu Gu and Yue Zhang and Xiaodi Li and Daniel Dean and Xiaoxi Liu and Jingmin Xu and Hui Lei and Yaoping Ruan",
note = "Funding Information: This works was supported by Baidu Big Data Lab and IBM Watson Health Cloud Publisher Copyright: {\textcopyright} 2017 IEEE.; 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 ; Conference date: 13-11-2017 Through 16-11-2017",
year = "2017",
month = dec,
day = "15",
doi = "10.1109/BIBM.2017.8217680",
language = "English (US)",
series = "Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "386--391",
editor = "Illhoi Yoo and Zheng, {Jane Huiru} and Yang Gong and Hu, {Xiaohua Tony} and Chi-Ren Shyu and Yana Bromberg and Jean Gao and Dmitry Korkin",
booktitle = "Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017",
}