Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation

Jonathan Miller, Andrew J. Watrous, Melina Tsitsiklis, Sang Ah Lee, Sameer A. Sheth, Catherine A. Schevon, Elliot H. Smith, Michael R. Sperling, Ashwini Sharan, Ali Akbar Asadi-Pooya, Gregory A. Worrell, Stephen Meisenhelter, Cory S. Inman, Kathryn A. Davis, Bradley Lega, Paul A. Wanda, Sandhitsu R. Das, Joel M. Stein, Richard Gorniak, Joshua Jacobs

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


The hippocampus plays a vital role in various aspects of cognition including both memory and spatial navigation. To understand electrophysiologically how the hippocampus supports these processes, we recorded intracranial electroencephalographic activity from 46 neurosurgical patients as they performed a spatial memory task. We measure signals from multiple brain regions, including both left and right hippocampi, and we use spectral analysis to identify oscillatory patterns related to memory encoding and navigation. We show that in the left but not right hippocampus, the amplitude of oscillations in the 1-3-Hz "low theta" band increases when viewing subsequently remembered object-location pairs. In contrast, in the right but not left hippocampus, low-theta activity increases during periods of navigation. The frequencies of these hippocampal signals are slower than task-related signals in the neocortex. These results suggest that the human brain includes multiple lateralized oscillatory networks that support different aspects of cognition.

Original languageEnglish (US)
Article number2423
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation'. Together they form a unique fingerprint.

Cite this