k-space undersampling in PROPELLER imaging

Konstantinos Arfanakis, Ashish A. Tamhane, James G. Pipe, Mark A. Anastasio

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


PROPELLER MRI (periodically rotated overlapping parallel lines with enhanced reconstruction) provides images with significantly fewer B o-related artifacts than echo-planar imaging (EPI), as well as reduced sensitivity to motion compared to conventional multiple-shot fast spin-echo (FSE). However, the minimum imaging time in PROPELLER is markedly longer than in EPI and 50% longer than in conventional multiple-shot FSE. Often in MRI, imaging time is reduced by undersampling k-space. In the present study, the effects of undersampling on PROPELLER images were evaluated using simulated and in vivo data sets. Undersampling using PROPELLER patterns with reduced number of samples per line, number of lines per blade, or number of blades per acquisition, while maintaining the same k-space field of view (FOVk) and uniform sampling at the edges of FOVk, reduced imaging time but led to severe image artifacts. In contrast, undersampling by means of removing whole blades from a PROPELLER sampling pattern that sufficiently samples k-space produced only minimal image artifacts, mainly manifested as blurring in directions parallel to the blades removed, even when reducing imaging time by as much as 50%. Finally, undersampling using asymmetric blades and taking advantage of Hermitian symmetries to fill-in the missing data significantly reduced imaging time without causing image artifacts.

Original languageEnglish (US)
Pages (from-to)675-683
Number of pages9
JournalMagnetic Resonance in Medicine
Issue number3
StatePublished - Mar 2005


  • Acceleration
  • Artifacts
  • Undersampling
  • k-space

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'k-space undersampling in PROPELLER imaging'. Together they form a unique fingerprint.

Cite this