TY - JOUR
T1 - Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing
AU - Perez-Rodriguez, Diego
AU - Kalyva, Maria
AU - Leija-Salazar, Melissa
AU - Lashley, Tammaryn
AU - Tarabichi, Maxime
AU - Chelban, Viorica
AU - Gentleman, Steve
AU - Schottlaender, Lucia
AU - Franklin, Hannah
AU - Vasmatzis, George
AU - Houlden, Henry
AU - Schapira, Anthony H.V.
AU - Warner, Thomas T.
AU - Holton, Janice L.
AU - Jaunmuktane, Zane
AU - Proukakis, Christos
N1 - Funding Information:
This work was funded by the Michael J Fox Foundation for Parkinson’s Research. This research was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre and The Edmond J. Safra Foundation, and The Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001202), the UK Medical Research Council (FC001202) and the Wellcome Trust (FC001202) (MT). ZJ is supported by the Department of Health’s NIHR Biomedical Research Centre’s funding scheme. JLH is supported by the Multiple System Atrophy Trust; the Multiple System Atrophy Coalition; Fund Sophia, managed by the King Baudouin Foundation and Karin & Sten Mortstedt CBD Solutions. HH is supported by the MSA Trust, Medical Research Council (MRC UK MR/ J004758/1, G0802760, G1001253) and The Wellcome Trust equipment and strategic award (Synaptopathies) funding (WT093205MA and WT104033/Z/ 14/Z). VC is supported by the Association of British Neurologists’ Academic Clinical Training Research Fellowship and the MSA Trust. Queen Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological Studies and the Medical Research Council UK. The Parkinson’s UK Tissue Bank is funded by Parkinson’s UK, a charity registered in England and Wales (258197) and in Scotland (SC037554).
Funding Information:
This study has been approved by the National Research Ethics service London – Hampstead (10/H0729/21) in addition to approval from brain tissue banks by the UK National Research Ethics Service (07/MRE09/72). All donors had given informed consent for the use of the brains in research.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/12/23
Y1 - 2019/12/23
N2 - Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
AB - Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
KW - Alpha-synuclein
KW - Mosaicism
KW - Multiple system atrophy
KW - Parkinson's disease
KW - SNCA
KW - Single cell sequencing
KW - Somatic mutation
UR - http://www.scopus.com/inward/record.url?scp=85077073860&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077073860&partnerID=8YFLogxK
U2 - 10.1186/s40478-019-0873-5
DO - 10.1186/s40478-019-0873-5
M3 - Article
C2 - 31870437
AN - SCOPUS:85077073860
SN - 2051-5960
VL - 7
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
IS - 1
M1 - 219
ER -