High resolution multi-detector CT aided tissue analysis and quantification of lung fibrosis

Vanessa A. Zavaletta, Ronald A. Karwoski, Brian Bartholmai, Richard A. Robb

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Idiopathic pulmonary fibrosis (IPF, also known as Idiopathic Usual Interstitial Pneumontis, pathologically) is a progressive diffuse lung disease which has a median survival rate of less than four years with a prevalence of 15-20/100,000 in the United States. Global function changes are measured by pulmonary function tests and the diagnosis and extent of pulmonary structural changes are typically assessed by acquiring two-dimensional high resolution CT (HRCT) images. The acquisition and analysis of volumetric high resolution Multi-Detector CT (MDCT) images with nearly isotropic pixels offers the potential to measure both lung function and structure. This paper presents a new approach to three dimensional lung image analysis and classification of normal and abnormal structures in lungs with IPF.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2006
Subtitle of host publicationPhysiology, Function, and Structure from Medical Images
DOIs
StatePublished - 2006
EventMedical Imaging 2006: Physiology, Function, and Structure from Medical Images - San Diego, CA, United States
Duration: Feb 12 2006Feb 14 2006

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume6143 II
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2006: Physiology, Function, and Structure from Medical Images
Country/TerritoryUnited States
CitySan Diego, CA
Period2/12/062/14/06

Keywords

  • Lung Analysis
  • Lung imaging
  • Tissue Classification

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'High resolution multi-detector CT aided tissue analysis and quantification of lung fibrosis'. Together they form a unique fingerprint.

Cite this