Genome analysis and pleiotropy assessment using causal networks with loss of function mutation and metabolomics

Azam Yazdani, Akram Yazdani, Sarah H. Elsea, Daniel J. Schaid, Michael R. Kosorok, Gita Dangol, Ahmad Samiei

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Background: Many genome-wide association studies have detected genomic regions associated with traits, yet understanding the functional causes of association often remains elusive. Utilizing systems approaches and focusing on intermediate molecular phenotypes might facilitate biologic understanding. Results: The availability of exome sequencing of two populations of African-Americans and European-Americans from the Atherosclerosis Risk in Communities study allowed us to investigate the effects of annotated loss-of-function (LoF) mutations on 122 serum metabolites. To assess the findings, we built metabolomic causal networks for each population separately and utilized structural equation modeling. We then validated our findings with a set of independent samples. By use of methods based on concepts of Mendelian randomization of genetic variants, we showed that some of the affected metabolites are risk predictors in the causal pathway of disease. For example, LoF mutations in the gene KIAA1755 were identified to elevate the levels of eicosapentaenoate (p-value = 5E-14), an essential fatty acid clinically identified to increase essential hypertension. We showed that this gene is in the pathway to triglycerides, where both triglycerides and essential hypertension are risk factors of metabolomic disorder and heart attack. We also identified that the gene CLDN17, harboring loss-of-function mutations, had pleiotropic actions on metabolites from amino acid and lipid pathways. Conclusion: Using systems biology approaches for the analysis of metabolomics and genetic data, we integrated several biological processes, which lead to findings that may functionally connect genetic variants with complex diseases.

Original languageEnglish (US)
Article number395
JournalBMC genomics
Issue number1
StatePublished - May 21 2019


  • Causal network in observational study
  • Genome analysis
  • Instrumental variable
  • Loss of function
  • Mendelian randomization principles
  • Structural equation modeling
  • The G-DAG algorithm
  • Underlying metabolomic relationship

ASJC Scopus subject areas

  • Biotechnology
  • Genetics


Dive into the research topics of 'Genome analysis and pleiotropy assessment using causal networks with loss of function mutation and metabolomics'. Together they form a unique fingerprint.

Cite this