TY - JOUR
T1 - Flurofamide Prevention and Treatment of Ureaplasma-Induced Hyperammonemia
AU - Fleming, Derek
AU - Patel, Robin
N1 - Funding Information:
We thank the Clinical Microbiology Laboratory at Mayo Clinic, Rochester for providing the clinical isolates used in this study. R.P. reports grants from ContraFect, TenNor Therapeutics Limited, and BioFire. R.P. is a consultant to Curetis, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics, PhAST, Torus Biosystems, Day Zero Diagnostics, Mammoth Biosciences, and Qvella; monies are paid to Mayo Clinic. Mayo Clinic and R.P. have a relationship with Pathogenomix. R.P. has research supported by Adaptive Phage Therapeutics. Mayo Clinic has a royalty-bearing know-how agreement and equity in Adaptive Phage Therapeutics. R.P. is also a consultant to Netflix and CARB-X. In addition, R.P. has a patent on Bordetella pertussis/parapertussis PCR issued, a patent on a device/ method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued. R.P. receives honoraria from the NBME, Up-to-Date and the Infectious Diseases Board Review Course. The research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R21AI150649. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Funding Information:
The research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award number R21AI150649. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Funding Information:
Editor Meghan Starolis, Quest Diagnostics Copyright © 2022 Fleming and Patel. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Robin Patel, patel.robin@mayo.edu. The authors declare a conflict of interest. R.P. reports grants from ContraFect, TenNor Therapeutics Limited, and BioFire. R.P. is a consultant to Curetis, Specific Technologies, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics, PhAST, Torus Biosystems, Day Zero Diagnostics, Mammoth Biosciences, and Qvella; monies are paid to Mayo Clinic. Mayo Clinic and R.P. have a relationship with Pathogenomix. R.P. has research supported by Adaptive Phage Therapeutics. Mayo Clinic has a royalty-bearing know-how agreement and equity in Adaptive Phage Therapeutics. R.P. is also a consultant to Netflix and CARB-X. In addition, R.P. has a patent on Bordetella pertussis/parapertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued. R.P. receives honoraria from the NBME, Up-to-Date and the Infectious Diseases Board Review Course. Received 26 May 2022 Accepted 8 August 2022 Published 22 August 2022
Publisher Copyright:
© 2022 Fleming and Patel. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
PY - 2022/9
Y1 - 2022/9
N2 - Hyperammonemia (HA) syndrome caused by respiratory infection with ammonia (NH3)-producing Ureaplasma species occurs in 4% of lung transplant recipients (LTRs) and is associated with high mortality. Although Ureaplasma-targeted antibiotic intervention is effective, the threat of antibiotic resistance development and pre-existing resistance make an alternative to antibiotics desirable. Considering that the underlying pathology of Ureaplasma-induced hyperammonemia (UIHA) is dependent upon ureaplasmal urease converting urea to NH3, urease inhibition could represent a targeted treatment approach. Here, the ability of the urease inhibitor, flurofamide, to prevent and treat UIHA was investigated. To confirm that flurofamide is broadly active against Ureaplasma respiratory isolates, the minimum urease inhibitory concentration against 4 isolates of Ureaplasma parvum and 5 isolates of Ureaplasma urealyticum was first determined in vitro. NH3 production by all isolates was inhibited by #2 mM flurofamide. To test the ability of flurofamide to prevent and treat UIHA, a mouse model of Ureaplasma respiratory infection was utilized. When animals were administered 6 mg/kg flurofamide via intraperitoneal injection 1 h prior to infection with U. parvum, flurofamide-administered animals exhibited significantly lower blood NH3 levels than did non-prophylaxed animals (10.9 6 4.0 mmol/L compared to 26.5 6 17.7 mmol/L; P = 0.0146) 24 h post-treatment. When U. parvum-infected hyperammonemic mice were treated with 6 mg/kg flurofamide, treated animals had significantly greater decreases in blood-NH3 levels 6 h post-treatment than did untreated mice (56.4 6 17.1% compared to 9.1 6 33.5% reduction; P = 0.0152). Together, these results indicate that flurofamide is a promising non-antibiotic treatment for UIHA in LTRs. IMPORTANCE Ureaplasma-associated hyperammonemia syndrome occurs in 4% of lung transplant recipients and has historically been almost universally fatal. While Ureaplasma-targeted antibiotics have been shown to be protective, the possibility of underlying resistance and resistance selection render non-antibiotic interventions an interesting approach.
AB - Hyperammonemia (HA) syndrome caused by respiratory infection with ammonia (NH3)-producing Ureaplasma species occurs in 4% of lung transplant recipients (LTRs) and is associated with high mortality. Although Ureaplasma-targeted antibiotic intervention is effective, the threat of antibiotic resistance development and pre-existing resistance make an alternative to antibiotics desirable. Considering that the underlying pathology of Ureaplasma-induced hyperammonemia (UIHA) is dependent upon ureaplasmal urease converting urea to NH3, urease inhibition could represent a targeted treatment approach. Here, the ability of the urease inhibitor, flurofamide, to prevent and treat UIHA was investigated. To confirm that flurofamide is broadly active against Ureaplasma respiratory isolates, the minimum urease inhibitory concentration against 4 isolates of Ureaplasma parvum and 5 isolates of Ureaplasma urealyticum was first determined in vitro. NH3 production by all isolates was inhibited by #2 mM flurofamide. To test the ability of flurofamide to prevent and treat UIHA, a mouse model of Ureaplasma respiratory infection was utilized. When animals were administered 6 mg/kg flurofamide via intraperitoneal injection 1 h prior to infection with U. parvum, flurofamide-administered animals exhibited significantly lower blood NH3 levels than did non-prophylaxed animals (10.9 6 4.0 mmol/L compared to 26.5 6 17.7 mmol/L; P = 0.0146) 24 h post-treatment. When U. parvum-infected hyperammonemic mice were treated with 6 mg/kg flurofamide, treated animals had significantly greater decreases in blood-NH3 levels 6 h post-treatment than did untreated mice (56.4 6 17.1% compared to 9.1 6 33.5% reduction; P = 0.0152). Together, these results indicate that flurofamide is a promising non-antibiotic treatment for UIHA in LTRs. IMPORTANCE Ureaplasma-associated hyperammonemia syndrome occurs in 4% of lung transplant recipients and has historically been almost universally fatal. While Ureaplasma-targeted antibiotics have been shown to be protective, the possibility of underlying resistance and resistance selection render non-antibiotic interventions an interesting approach.
KW - Ureaplasma
KW - hyperammonemia
KW - lung transplantation
UR - http://www.scopus.com/inward/record.url?scp=85140856079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140856079&partnerID=8YFLogxK
U2 - 10.1128/spectrum.01927-22
DO - 10.1128/spectrum.01927-22
M3 - Article
C2 - 35993783
AN - SCOPUS:85140856079
SN - 2165-0497
VL - 10
JO - Microbiology Spectrum
JF - Microbiology Spectrum
IS - 5
ER -