Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B

Sergio A. Gradilone, Pamela S. Tietz, Patrick L. Splinter, Raúl A. Marinelli, Nicholas F. LaRusso

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


Background: Recent data suggest that canalicular bile secretion involves selective expression and coordinated regulation of aquaporins (AQPs), a family of water channels proteins. In order to further characterize the role of AQPs in this process, an in vitro cell system with retained polarity and expression of AQPs and relevant solute transporters involved in bile formation is highly desirable. The WIF-B cell line is a highly differentiated and polarized rat hepatoma/human fibroblast hybrid, which forms abundant bile canalicular structures. This cell line has been reported to be a good in vitro model for studying hepatocyte polarity. Results: Using RT-PCR, immunoblotting and confocal immunofluorescence, we showed that WIFB cells express the aquaporin water channels that facilitate the osmotically driven water movements in the liver, i.e. AQP8, AQP9, and AQP0; as well as the key solute transporters involved in the generation of canalicular osmotic gradients, i.e., the bile salt export pump Bsep, the organic anion transporter Mrp2 and the chloride bicarbonate exchanger AE2. The subcellular localization of the AQPs and the solute transporters in WIF-B cells was similar to that in freshly isolated rat hepatocytes and in intact liver. Immunofluorescent costaining studies showed intracellular colocalization of AQP8 and AE2, suggesting the possibility that these transporters are expressed in the same population of pericanalicular vesicles. Conclusion: The hepatocyte cell line WIF-B retains the expression and subcellular localization of aquaporin water channels as well as key solute transporters for canalicular bile secretion. Thus, these cells can work as a valuable tool for regulatory and mechanistic studies of the biology of bile formation.

Original languageEnglish (US)
JournalBMC Physiology
StatePublished - Aug 18 2005

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)


Dive into the research topics of 'Expression and subcellular localization of aquaporin water channels in the polarized hepatocyte cell line, WIF-B'. Together they form a unique fingerprint.

Cite this