Differential H2O2 Metabolism among Glioblastoma Subtypes Confers Variable Responses to Pharmacological Ascorbate Therapy Combined with Chemoradiation

Amira Zaher, Kranti A. Mapuskar, Jann N. Sarkaria, Douglas R. Spitz, Michael S. Petronek, Bryan G. Allen

Research output: Contribution to journalArticlepeer-review

Abstract

Glioblastoma (GBM), a highly lethal and aggressive central nervous system malignancy, presents a critical need for targeted therapeutic approaches to improve patient outcomes in conjunction with standard-of-care (SOC) treatment. Molecular subtyping based on genetic profiles and metabolic characteristics has advanced our understanding of GBM to better predict its evolution, mechanisms, and treatment regimens. Pharmacological ascorbate (P-AscH) has emerged as a promising supplementary cancer therapy, leveraging its pro-oxidant properties to selectively kill malignant cells when combined with SOC. Given the clinical challenges posed by the heterogeneity and resistance of various GBM subtypes to conventional SOC, our study assessed the response of classical, mesenchymal, and proneural GBM to P-AscH. P-AscH (20 pmol/cell) combined with SOC (5 µM temozolomide and 4 Gy of radiation) enhanced clonogenic cell killing in classical and mesenchymal GBM subtypes, with limited effects in the proneural subtype. Similarly, following exposure to P-AscH (20 pmol/cell), single-strand DNA damage significantly increased in classical and mesenchymal but not proneural GBM. Moreover, proneural GBM exhibited increased hydrogen peroxide removal rates, along with increased catalase and glutathione peroxidase activities compared to mesenchymal and classical GBM, demonstrating an altered H2O2 metabolism that potentially drives differential P-AscH toxicity. Taken together, these data suggest that P-AscH may hold promise as an approach to improve SOC responsiveness in mesenchymal GBMs that are known for their resistance to SOC.

Original languageEnglish (US)
Article number17158
JournalInternational journal of molecular sciences
Volume24
Issue number24
DOIs
StatePublished - Dec 2023

Keywords

  • antioxidant therapy
  • chemoradiation
  • DNA damage
  • glioblastoma
  • glioblastoma subtypes
  • hydrogen peroxide
  • pharmacological ascorbate
  • prooxidant

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this