TY - JOUR
T1 - Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3
AU - Ryan, Zachary C.
AU - Craig, Theodore A.
AU - Filoteo, Adelaida G.
AU - Westendorf, Jennifer J.
AU - Cartwright, Elizabeth J.
AU - Neyses, Ludwig
AU - Strehler, Emanuel E.
AU - Kumar, Rajiv
N1 - Funding Information:
Supported in part by NIH grant DK066013 .
Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2015/11/6
Y1 - 2015/11/6
N2 - The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1fl/fl) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1EKO mice). Pmca1EKO mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1EKO mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1EKO mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1EKO mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1EKO mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.
AB - The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1fl/fl) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1EKO mice). Pmca1EKO mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1EKO mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1EKO mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1EKO mice (P < 0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1EKO mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3.
KW - 1α,25-dihydroxyvitamin D
KW - Atp2b1
KW - Bone density
KW - Calcium transport
KW - Intestine
KW - Plasma membrane calcium pump
KW - Pmca1
UR - http://www.scopus.com/inward/record.url?scp=84944900040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84944900040&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2015.09.087
DO - 10.1016/j.bbrc.2015.09.087
M3 - Article
C2 - 26392310
AN - SCOPUS:84944900040
SN - 0006-291X
VL - 467
SP - 152
EP - 156
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 1
ER -