Debiasing-based noise suppression for ultrafast ultrasound microvessel imaging

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


Ultrasound microvessel imaging (UMI) based on the combination of singular value decomposition (SVD) clutter filtering and ultrafast plane wave imaging has recently demonstrated significantly improved Doppler sensitivity, especially to small vessels that are invisible to conventional Doppler imaging. Practical implementation of UMI is hindered by the high computational cost associated with SVD and low blood signal-to-noise ratio (SNR) in deep regions of the tissue due to the lack of transmit focusing of plane waves. Concerning the high computational cost, an accelerated SVD clutter filtering method based on randomized SVD (rSVD) and randomized spatial downsampling (rSD) was recently proposed by our group, which showed the feasibility of real-time implementation of UMI. Concerning the low blood flow SNR in deep imaging regions, here we propose a noise suppression method based on noise debiasing that can be easily applied to the accelerated SVD method to bridge the gap between real-time implementation and high imaging quality. The proposed method experimentally measures the noise-induced bias by collecting the noise signal using the identical imaging sequence as regular UMI, but with the ultrasound transmission turned off. The estimated bias can then be subtracted from the original power Doppler (PD) image to obtain effective noise suppression. The feasibility of the proposed method was validated under different ultrasound imaging parameters [including transmitting voltages and time-gain compensation (TGC) settings] with a phantom experiment. The noise-debiased images showed an increase of up to 15.3 and 13.4 dB in SNR as compared to original PD images on the blood flow phantom and an in vivo human kidney data set, respectively. The proposed noise suppression method has negligible computational cost and can be conveniently combined with the previously proposed accelerated SVD clutter filtering technique to achieve high quality, real-time UMI imaging.

Original languageEnglish (US)
Article number8720262
Pages (from-to)1281-1291
Number of pages11
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Issue number8
StatePublished - Aug 2019


  • Noise suppression
  • power Doppler (PD)
  • singular value decomposition (SVD)
  • ultrafast ultrasound
  • ultrasound microvessel imaging (UMI)

ASJC Scopus subject areas

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Debiasing-based noise suppression for ultrafast ultrasound microvessel imaging'. Together they form a unique fingerprint.

Cite this