Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep convolutional neural network (DCNN)-based noise reduction methods have been increasingly deployed in clinical CT. Accurate assessment of their spatial resolution properties is required. Spatial resolution is typically measured on physical phantoms, which may not represent the true performance of DCNN in patients as it is typically trained and tested with patient images and the generalizability of DNN to physical phantoms is questionable. In this work, we proposed a patient-data-based framework to measure the spatial resolution of DCNN methods, which involves lesion- and noise-insertion in projection domain, lesion ensemble averaging, and modulation transfer function measurement using an oversampled edge spread function from the cylindrical lesion signal. The impact of varying lesion contrast, dose levels, and CNN denoising strengths were investigated for a ResNet-based DCNN model trained using patient images. The spatial resolution degradation of DCNN reconstructions becomes more severe as the contrast or radiation dose decreased, or DCNN denoising strength increased. The measured 50%/10% MTF spatial frequencies of DCNN with highest denoising strength were (-500 HU:0.36/0.72 mm-1; -100 HU:0.32/0.65 mm-1; -50 HU:0.27/0.53 mm-1; -20 HU:0.18/0.36 mm-1; -10 HU:0.15/0.30 mm-1), while the 50%/10% MTF values of FBP were almost kept constant of 0.38/0.76 mm-1.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2023
Subtitle of host publicationPhysics of Medical Imaging
EditorsLifeng Yu, Rebecca Fahrig, John M. Sabol
PublisherSPIE
ISBN (Electronic)9781510660311
DOIs
StatePublished - 2023
EventMedical Imaging 2023: Physics of Medical Imaging - San Diego, United States
Duration: Feb 19 2023Feb 23 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12463
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2023: Physics of Medical Imaging
Country/TerritoryUnited States
CitySan Diego
Period2/19/232/23/23

Keywords

  • Computed tomography (CT)
  • Deep convolutional neural network (DCNN)
  • Image quality

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Contrast- and noise-dependent spatial resolution measurement for deep convolutional neural network-based noise reduction in CT using patient data'. Together they form a unique fingerprint.

Cite this