Content-based image retrieval of multiphase CT images for focal liver lesion characterization

Yanling Chi, Jiayin Zhou, Sudhakar K. Venkatesh, Qi Tian, Jimin Liu

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Purpose: Characterization of focal liver lesions with various imaging modalities can be very challenging in the clinical practice and is experience-dependent. The authors' aim is to develop an automatic method to facilitate the characterization of focal liver lesions (FLLs) using multiphase computed tomography (CT) images by radiologists. Methods: A multiphase-image retrieval system is proposed to retrieve a preconstructed database of FLLs with confirmed diagnoses, which can assist radiologists' decision-making in FLL characterization. It first localizes the FLL on multiphase CT scans using a hybrid generative-discriminative FLL detection method and a nonrigid B-spline registration method. Then, it extracts the multiphase density and texture features to numerically represent the FLL. Next, it compares the query FLL with the model FLLs in the database in terms of the feature and measures their similarities using the L1-norm based similarity scores. The model FLLs are ranked by similarities and the top results are finally provided to the users for their evidence studies. Results: The system was tested on a database of 69 four-phase contrast-enhanced CT scans, consisting of six classes of liver lesions, and evaluated in terms of the precision-recall curve and the Bull's Eye Percentage Score (BEP). It obtained a BEP score of 78%. Compared with any single-phase based representation, the multiphase-based representation increased the BEP scores of the system, from 63%-65% to 78%. In a pilot study, two radiologists performed characterization of FLLs without and with the knowledge of the top five retrieved results. The results were evaluated in terms of the diagnostic accuracy, the receiver operating characteristic (ROC) curve and the mean diagnostic confidence. One radiologist's accuracy improved from 75% to 92%, the area under ROC curves (AUC) from 0.85 to 0.95 (p = 0.081), and the mean diagnostic confidence from 4.6 to 7.3 (p = 0.039). The second radiologist's accuracy did not change, at 75%, with AUC increasing from 0.72 to 0.75 (p = 0.709), and the mean confidence from 4.5 to 4.9 (p = 0.607). Conclusions: Multiphase CT images can be used in content-based image retrieval for FLL's categorization and result in good performance in comparison with single-phase CT images. The proposed method has the potential to improve the radiologists' diagnostic accuracy and confidence by providing visually similar lesions with confirmed diagnoses for their interpretation of clinical studies.

Original languageEnglish (US)
Article number103502
JournalMedical physics
Issue number10
StatePublished - 2013


  • Clinical decision support system
  • Focal liver lesion characterization
  • Multiphase image retrieval
  • Multiphase representation
  • Similarity query

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Content-based image retrieval of multiphase CT images for focal liver lesion characterization'. Together they form a unique fingerprint.

Cite this