Combining Evolving Neural Network Classifiers Using Bagging

Sunghwan Sohn, Cihan H. Dagli

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations


The performance of the neural network classifier significantly depends on its architecture and generalization. It is usual to find the proper architecture by trial and error. This is time consuming and may not always find the optimal network. For this reason, we apply genetic algorithms to the automatic generation of neural networks. Many researchers have provided that combining multiple classifiers improves generalization. One of the most effective combining methods is bagging. In bagging, training sets are selected by resampling from the original training set and classifiers trained with these sets are combined by voting. We implement the bagging technique into the training of evolving neural network classifiers to improve generalization.

Original languageEnglish (US)
Number of pages5
StatePublished - Sep 25 2003
EventInternational Joint Conference on Neural Networks 2003 - Portland, OR, United States
Duration: Jul 20 2003Jul 24 2003


OtherInternational Joint Conference on Neural Networks 2003
Country/TerritoryUnited States
CityPortland, OR

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence


Dive into the research topics of 'Combining Evolving Neural Network Classifiers Using Bagging'. Together they form a unique fingerprint.

Cite this