TY - JOUR
T1 - Clinical and biochemical phenotypes of adults with monoallelic and biallelic CYP24A1 mutations
T2 - evidence of gene dose effect
AU - O’Keeffe, D. T.
AU - Tebben, P. J.
AU - Kumar, R.
AU - Singh, R. J.
AU - Wu, Y.
AU - Wermers, R. A.
N1 - Funding Information:
This study was made possible using the resources of CTSA Grant Number UL1 TR000135 from the National Center for Advancing Translational Science (NCATS).
Publisher Copyright:
© 2016, International Osteoporosis Foundation and National Osteoporosis Foundation.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - Summary: Mutations of the CYP24A1 gene can result in hypercalcemia, hyerpercalciuria, and nephrolithiasis, but disease severity is variable. Clinical and biochemical phenotypes were correlated with gene sequence information in a family with two CYP24A1 mutations. A gene dose effect was apparent with monoallelic mutations demonstrating milder disease manifestations than biallelic mutations. Introduction: The objective was to examine the spectrum of clinical and biochemical phenotypes in a family with monoallelic and biallelic mutations of CYP24A1 after identification of the proband with two mutations of the CYP24A1 gene: (A) p.R396W and (B) E143del-Het. Methods: Clinical and biochemical phenotypes were correlated with CYP24A1 sequence information in the proband and four siblings, a daughter, and two nieces of the proband. The subjects’ medical histories were evaluated, and measurement of serum minerals, vitamin D metabolites, PTH, bone turnover markers, and urinary calcium and sequencing of the CYP24A1 gene were performed. Results: The proband had nephrolithiasis, osteopenia, hypercalcemia, hypercalciuria, elevated serum 1,25(OH)2D, undetectable 24,25(OH)2D, and inappropriately low PTH concentrations. Two subjects with biallelic (A/B) mutations had nephrolithiasis, marked hypercalciuria (583 ± 127 mg/24 h, mean ± SD), compared with five subjects with monoallelic mutations (A or B) with a urine calcium of 265 ± 85 mg/24 h. Two subjects with monoallelic mutations had nephrolithiasis and one had non-PTH dependent hypercalcemia. Five subjects had high 1,25(OH)2D measurements, including three with monoallelic mutations. The 25OHD/24,25(OH)2D ratio, in subjects with biallelic mutations was 291 versus 19.8 in the subjects with monoallelic mutations. Conclusions: In this family, adults with CYP24A1 mutations a gene dose effect is apparent: subjects with biallelic, compound heterozygous mutations (A/B) have a more severe clinical and biochemical phenotype, whereas, subjects with monoallelic mutations demonstrate milder disease manifestations which are not easily characterized through biochemical assessment.
AB - Summary: Mutations of the CYP24A1 gene can result in hypercalcemia, hyerpercalciuria, and nephrolithiasis, but disease severity is variable. Clinical and biochemical phenotypes were correlated with gene sequence information in a family with two CYP24A1 mutations. A gene dose effect was apparent with monoallelic mutations demonstrating milder disease manifestations than biallelic mutations. Introduction: The objective was to examine the spectrum of clinical and biochemical phenotypes in a family with monoallelic and biallelic mutations of CYP24A1 after identification of the proband with two mutations of the CYP24A1 gene: (A) p.R396W and (B) E143del-Het. Methods: Clinical and biochemical phenotypes were correlated with CYP24A1 sequence information in the proband and four siblings, a daughter, and two nieces of the proband. The subjects’ medical histories were evaluated, and measurement of serum minerals, vitamin D metabolites, PTH, bone turnover markers, and urinary calcium and sequencing of the CYP24A1 gene were performed. Results: The proband had nephrolithiasis, osteopenia, hypercalcemia, hypercalciuria, elevated serum 1,25(OH)2D, undetectable 24,25(OH)2D, and inappropriately low PTH concentrations. Two subjects with biallelic (A/B) mutations had nephrolithiasis, marked hypercalciuria (583 ± 127 mg/24 h, mean ± SD), compared with five subjects with monoallelic mutations (A or B) with a urine calcium of 265 ± 85 mg/24 h. Two subjects with monoallelic mutations had nephrolithiasis and one had non-PTH dependent hypercalcemia. Five subjects had high 1,25(OH)2D measurements, including three with monoallelic mutations. The 25OHD/24,25(OH)2D ratio, in subjects with biallelic mutations was 291 versus 19.8 in the subjects with monoallelic mutations. Conclusions: In this family, adults with CYP24A1 mutations a gene dose effect is apparent: subjects with biallelic, compound heterozygous mutations (A/B) have a more severe clinical and biochemical phenotype, whereas, subjects with monoallelic mutations demonstrate milder disease manifestations which are not easily characterized through biochemical assessment.
KW - CYP24A1
KW - Genetic
KW - Hypercalcemia
KW - Nephrolithiasis
KW - Vitamin D
UR - http://www.scopus.com/inward/record.url?scp=84964689152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964689152&partnerID=8YFLogxK
U2 - 10.1007/s00198-016-3615-6
DO - 10.1007/s00198-016-3615-6
M3 - Article
C2 - 27129455
AN - SCOPUS:84964689152
SN - 0937-941X
VL - 27
SP - 3121
EP - 3125
JO - Osteoporosis International
JF - Osteoporosis International
IS - 10
ER -