Biomechanical evaluation of flexor tendon graft with different repair techniques and graft surface modification

Jingheng Wu, Andrew R. Thoreson, Ramona L. Reisdorf, Kai Nan An, Steven L. Moran, Peter C. Amadio, Chunfeng Zhao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


The purpose of this study was to investigate the biomechanical properties of modified repair techniques for flexor tendon reconstruction and the effects of surface modification using carbodiimide-derivatized synovial fluid plus gelatin (cd-SF-G), compared to the traditional repair techniques. The second and fifth digits from 16 canine forepaws were randomly divided into 4 groups: (1) traditional graft repairs (TGR group) including distal Bunnell repair and proximal Pulvertaft weave repair; (2) modified graft repairs (MGR group) including distal graft bony attachment repair and proximal step-cut repair; (3) group TGR coated with cd-SF-G (TGR-C group); and (4) group MGR coated with cd-SF-G (MGR-C group). Digit normalized work of flexion (nWOF), ultimate failure strength, and stiffness were measured. The nWOF in MGR group was significantly less than TGR group (p < 0.05). The nWOF in groups treated with cd-SF-G was significantly less than their untreated counterparts (p < 0.05). Ultimate load to failure of the MGR-C group was significantly greater than the TGR-C group (p < 0.05), but no significant difference in stiffness was found between these two groups. The modified techniques cannot only improve tendon gliding abilities but can also improve breaking strength. Additionally, surface modification with cd-SF-G significantly decreased the work of flexion.

Original languageEnglish (US)
Pages (from-to)731-737
Number of pages7
JournalJournal of Orthopaedic Research
Issue number5
StatePublished - May 1 2015


  • flexor tendon
  • graft
  • reconstruction
  • surface modification
  • work of flexion

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine


Dive into the research topics of 'Biomechanical evaluation of flexor tendon graft with different repair techniques and graft surface modification'. Together they form a unique fingerprint.

Cite this