Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components from Ultrasound Images Using Deep Learning

Viksit Kumar, Jeremy Webb, Adriana Gregory, Duane D. Meixner, John M. Knudsen, Matthew Callstrom, Mostafa Fatemi, Azra Alizad

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Sonographic features associated with margins, shape, size, and volume of thyroid nodules are used to assess their risk of malignancy. Automatically segmenting nodules from normal thyroid gland would enable an automated estimation of these features. A novel multi-output convolutional neural network algorithm with dilated convolutional layers is presented to segment thyroid nodules, cystic components inside the nodules, and normal thyroid gland from clinical ultrasound B-mode scans. A prospective study was conducted, collecting data from 234 patients undergoing a thyroid ultrasound exam before biopsy. The training and validation sets encompassed 188 patients total; the testing set consisted of 48 patients. The algorithm effectively segmented thyroid anatomy into nodules, normal gland, and cystic components. The algorithm achieved a mean Dice coefficient of 0.76, a mean true positive fraction of 0.90, and a mean false positive fraction of 1.61× 10-6. The values are on par with a conventional seeded algorithm. The proposed algorithm eliminates the need for a seed in the segmentation process, thus automatically detecting and segmenting the thyroid nodules and cystic components. The detection rate for thyroid nodules and cystic components was 82% and 44%, respectively. The inference time per image, per fold was 107ms. The mean error in volume estimation of thyroid nodules for five select cases was 7.47%. The algorithm can be used for detection, segmentation, size estimation, volume estimation, and generating thyroid maps for thyroid nodules. The algorithm has applications in point of care, mobile health monitoring, improving workflow, reducing localization time, and assisting sonographers with limited expertise.

Original languageEnglish (US)
Article number9044381
Pages (from-to)63482-63496
Number of pages15
JournalIEEE Access
StatePublished - 2020


  • Deep learning
  • segmentation
  • thyroid nodule
  • thyroid nodule volume
  • ultrasound

ASJC Scopus subject areas

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)


Dive into the research topics of 'Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components from Ultrasound Images Using Deep Learning'. Together they form a unique fingerprint.

Cite this