TY - JOUR
T1 - Aortic valve area calculation in aortic stenosis by CT and doppler echocardiography
AU - Clavel, Marie Annick
AU - Malouf, Joseph
AU - Messika-Zeitoun, David
AU - Araoz, Phillip A.
AU - Michelena, Hector I.
AU - Enriquez-Sarano, Maurice
N1 - Funding Information:
Dr. Clavel holds a postdoctoral fellowship grant from Canadian Institute of Health Research. Dr. Malouf worked at Mayo Clinic as a consultant. Dr. Messika-Zeitoun is a consultant for Valtech, Edwards Lifesciences, and Abbott. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Publisher Copyright:
© 2015 American College of Cardiology Foundation.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Objectives The aim of this study was to verify the hypothesis that multidetector computed tomography (MDCT) is superior to echocardiography for measuring the left ventricular outflow tract (LVOT) and calculating the aortic valve area (AVA) with regard to hemodynamic correlations and survival outcome prediction after a diagnosis of aortic stenosis (AS). Background MDCT demonstrated that the LVOT is noncircular, casting doubt on the AVA measurement by 2-dimensional (2D) echocardiography. Methods A total of 269 patients (76 ± 11 years of age, 61% men) with isolated calcific AS (mean gradient 44 ± 18 mm Hg; ejection fraction 58 ± 15%) underwent Doppler echocardiography and MDCT within the same episode of care. AVA was calculated by echocardiography (AVAEcho) and by MDCT (AVACT) using each technique measurement of LVOT area. In the subset of patients undergoing dynamic 4-dimensional MDCT (n = 135), AVA was calculated with the LVOT measured at 70% and 20% of the R-R interval and measured by planimetry (AVAPlani). Results Phasic measurements of the LVOT by MDCT yielded slight differences in eccentricity and size (all p < 0.001) but with excellent AVA correlation (r = 0.92, p < 0.0001) and minimal bias (0.05 cm2), whereas the AVAPlani showed poor correlations with all other methods (all r values <0.58). AVACT was larger than AVAEcho (difference 0.12 ± 0.16 cm2; p < 0.0001) but did not improve outcome prediction. Correlation gradient-AVA was slightly better with AVAEcho than AVACT (r = -0.65 with AVAEcho vs. -0.61 with AVACT; p = 0.01), and discordant gradient-AVA was not reduced. For long-term survival, after multivariable adjustment, AVAEcho or AVACT were independently predictive (hazard ratio [HR]: 1.26, 95% confidence interval [CI]: 1.13 to 1.42; p < 0.0001 or HR: 1.18, 95% CI: 1.09 to 1.29 per 0.10 cm2 decrease; p < 0.0001) with a similar prognostic value (p ≥ 0.80). Thresholds for excess mortality differed between methods: AVAEcho ≤1.0 cm (HR: 4.67, 95% CI: 2.22 to 10.50; p < 0.0001) versus AVA ≤1.2 cm2 (HR: 3.16, 95% CI: 1.64 to 6.43; p = 0.005), with simple translation of spline-curve analysis. Conclusions Head-to-head comparison of MDCT and Doppler echocardiography refutes the hypothesis of MDCT superiority for AVA calculation. AVACT is larger than AVAEcho but does not improve the correlation with transvalvular gradient, the concordance gradient-AVA, or mortality prediction compared with AVAEcho. Larger cut-point values should be used for severe AS if AVACT (<1.2 cm2) is measured versus AVAEcho (<1.0 cm2).
AB - Objectives The aim of this study was to verify the hypothesis that multidetector computed tomography (MDCT) is superior to echocardiography for measuring the left ventricular outflow tract (LVOT) and calculating the aortic valve area (AVA) with regard to hemodynamic correlations and survival outcome prediction after a diagnosis of aortic stenosis (AS). Background MDCT demonstrated that the LVOT is noncircular, casting doubt on the AVA measurement by 2-dimensional (2D) echocardiography. Methods A total of 269 patients (76 ± 11 years of age, 61% men) with isolated calcific AS (mean gradient 44 ± 18 mm Hg; ejection fraction 58 ± 15%) underwent Doppler echocardiography and MDCT within the same episode of care. AVA was calculated by echocardiography (AVAEcho) and by MDCT (AVACT) using each technique measurement of LVOT area. In the subset of patients undergoing dynamic 4-dimensional MDCT (n = 135), AVA was calculated with the LVOT measured at 70% and 20% of the R-R interval and measured by planimetry (AVAPlani). Results Phasic measurements of the LVOT by MDCT yielded slight differences in eccentricity and size (all p < 0.001) but with excellent AVA correlation (r = 0.92, p < 0.0001) and minimal bias (0.05 cm2), whereas the AVAPlani showed poor correlations with all other methods (all r values <0.58). AVACT was larger than AVAEcho (difference 0.12 ± 0.16 cm2; p < 0.0001) but did not improve outcome prediction. Correlation gradient-AVA was slightly better with AVAEcho than AVACT (r = -0.65 with AVAEcho vs. -0.61 with AVACT; p = 0.01), and discordant gradient-AVA was not reduced. For long-term survival, after multivariable adjustment, AVAEcho or AVACT were independently predictive (hazard ratio [HR]: 1.26, 95% confidence interval [CI]: 1.13 to 1.42; p < 0.0001 or HR: 1.18, 95% CI: 1.09 to 1.29 per 0.10 cm2 decrease; p < 0.0001) with a similar prognostic value (p ≥ 0.80). Thresholds for excess mortality differed between methods: AVAEcho ≤1.0 cm (HR: 4.67, 95% CI: 2.22 to 10.50; p < 0.0001) versus AVA ≤1.2 cm2 (HR: 3.16, 95% CI: 1.64 to 6.43; p = 0.005), with simple translation of spline-curve analysis. Conclusions Head-to-head comparison of MDCT and Doppler echocardiography refutes the hypothesis of MDCT superiority for AVA calculation. AVACT is larger than AVAEcho but does not improve the correlation with transvalvular gradient, the concordance gradient-AVA, or mortality prediction compared with AVAEcho. Larger cut-point values should be used for severe AS if AVACT (<1.2 cm2) is measured versus AVAEcho (<1.0 cm2).
KW - aortic valve stenosis
KW - diagnostic method echocardiography
KW - multidetector CT
KW - survival
UR - http://www.scopus.com/inward/record.url?scp=84924353112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924353112&partnerID=8YFLogxK
U2 - 10.1016/j.jcmg.2015.01.009
DO - 10.1016/j.jcmg.2015.01.009
M3 - Article
C2 - 25772832
AN - SCOPUS:84924353112
SN - 1936-878X
VL - 8
SP - 248
EP - 257
JO - JACC: Cardiovascular Imaging
JF - JACC: Cardiovascular Imaging
IS - 3
ER -