An in-plane, mirror-symmetric visualization tool for deep brain stimulation electrodes

Thomas J. Richner, Bryan T. Klassen, Kai J. Miller

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Deep brain stimulation (DBS) is used to treat a range of neurologic conditions. Determining the anatomic location of the DBS lead and inferring the microelectrode recording track from co-registered pre-operative and post-operative scans is important for stereotactic surgery and neurophysiology research. Reslicing images with the DBS lead in-plane while maintaining mirror symmetry is not possible with current clinical navigation software. Therefore, we developed an open source software tool in Matlab for visualizing DBS lead placement and anatomic segmentation with computed tomography and magnetic resonance images. The code and graphical user interface are available at: github.com/camplaboratory/DBS-reslice.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1112-1115
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'An in-plane, mirror-symmetric visualization tool for deep brain stimulation electrodes'. Together they form a unique fingerprint.

Cite this