TY - JOUR
T1 - Testosterone and estradiol regulate free insulin-like growth factor I (IGF-I), IGF binding protein 1 (IGFBP-1), and dimeric IGF-I/IGFBP-1 concentrations
AU - Veldhuis, Johannes D.
AU - Frystyk, Jan
AU - Iranmanesh, Ali
AU - Ørskov, Hans
PY - 2005/5
Y1 - 2005/5
N2 - The present study tests the clinical postulate that elevated testosterone (Te) and estradiol (E2) concentrations modulate the effects of constant iv infusion of saline vs. recombinant human IGF-I on free IGF-I, IGF binding protein (IGFBP)-1, and dimeric IGF-I/IGFBP-1 concentrations in healthy aging adults. To this end, comparisons were made after administration of placebo (Pl) vs. Te in eight older men (aged 61 ± 4 yr) and after Pl vs. E 2 in eight postmenopausal women (62 ± 3 yr). In the saline session, E2 lowered and Te increased total IGF-I; E2 specifically elevated IGFBP-1 by 1.5-fold and suppressed free IGF-I by 34%; and E2 increased binary IGF-I/IGFBP-1 by 5-fold more than Te. During IGF-I infusion, the following were found: 1) total and free IGF-I rose 1.4- to 2.0-fold (Pl) and 2.1-2.5-fold (Te) more rapidly in men than women; 2) binary IGF-I/IGFBP-1 increased 3.4-fold more rapidly in men (Te) than women (E 2); and 3) end-infusion free IGF-I was 1.6-fold higher in men than women. In summary, E2, compared with Te supplementation, lowers concentrations of total and ultrafiltratably free IGF-I and elevates those of IGFBP-1 and binary IGF-I/IGFBP-1, thus putatively limiting IGF-I bioavailability. If free IGF-I mediates certain biological actions, then exogenous Te and E2 may modulate the tissue effects of total IGF-I concentrations unequally.
AB - The present study tests the clinical postulate that elevated testosterone (Te) and estradiol (E2) concentrations modulate the effects of constant iv infusion of saline vs. recombinant human IGF-I on free IGF-I, IGF binding protein (IGFBP)-1, and dimeric IGF-I/IGFBP-1 concentrations in healthy aging adults. To this end, comparisons were made after administration of placebo (Pl) vs. Te in eight older men (aged 61 ± 4 yr) and after Pl vs. E 2 in eight postmenopausal women (62 ± 3 yr). In the saline session, E2 lowered and Te increased total IGF-I; E2 specifically elevated IGFBP-1 by 1.5-fold and suppressed free IGF-I by 34%; and E2 increased binary IGF-I/IGFBP-1 by 5-fold more than Te. During IGF-I infusion, the following were found: 1) total and free IGF-I rose 1.4- to 2.0-fold (Pl) and 2.1-2.5-fold (Te) more rapidly in men than women; 2) binary IGF-I/IGFBP-1 increased 3.4-fold more rapidly in men (Te) than women (E 2); and 3) end-infusion free IGF-I was 1.6-fold higher in men than women. In summary, E2, compared with Te supplementation, lowers concentrations of total and ultrafiltratably free IGF-I and elevates those of IGFBP-1 and binary IGF-I/IGFBP-1, thus putatively limiting IGF-I bioavailability. If free IGF-I mediates certain biological actions, then exogenous Te and E2 may modulate the tissue effects of total IGF-I concentrations unequally.
UR - http://www.scopus.com/inward/record.url?scp=18844373877&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18844373877&partnerID=8YFLogxK
U2 - 10.1210/jc.2004-1314
DO - 10.1210/jc.2004-1314
M3 - Article
C2 - 15713723
AN - SCOPUS:18844373877
SN - 0021-972X
VL - 90
SP - 2941
EP - 2947
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 5
ER -