TY - JOUR
T1 - Somatic mutations in benign breast disease tissues and association with breast cancer risk
AU - Winham, Stacey J.
AU - Wang, Chen
AU - Heinzen, Ethan P.
AU - Bhagwate, Aditya
AU - Liu, Yuanhang
AU - McDonough, Samantha J.
AU - Stallings-Mann, Melody L.
AU - Frost, Marlene H.
AU - Vierkant, Robert A.
AU - Denison, Lori A.
AU - Carter, Jodi M.
AU - Sherman, Mark E.
AU - Radisky, Derek C.
AU - Degnim, Amy C.
AU - Cunningham, Julie M.
N1 - Funding Information:
We thank study participants of the Mayo Clinic Benign Breast Disease Cohort for making this research possible, and Ann Westphal with assistance with manuscript preparation.
Funding Information:
This work was supported by the National Cancer Institute via Grant R01CA187112, and also by the Asante Foundation. These funding bodies had no role in the study design, data generation, data analysis and interpretation, nor manuscript writing.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Benign breast disease (BBD) is a risk factor for breast cancer (BC); however, little is known about the genetic alterations present at the time of BBD diagnosis and how these relate to risk of incident BC. Methods: A subset of a long-term BBD cohort was selected to examine DNA variation across three BBD groups (42 future estrogen receptor-positive (ER+) BC, 36 future estrogen receptor-negative (ER−) BC, and 42 controls cancer-free for at least 16 years post-BBD). DNA extracted from archival formalin fixed, paraffin-embedded (FFPE) tissue blocks was analyzed for presence of DNA alterations using a targeted panel of 93 BC-associated genes. To address artifacts frequently observed in FFPE tissues (e.g., C>T changes), we applied three filtering strategies based on alternative allele frequencies and nucleotide substitution context. Gene-level associations were performed using two types of burden tests and adjusted for clinical and technical covariates. Results: After filtering, the variant frequency of SNPs in our sample was highly consistent with population allele frequencies reported in 1 KG/ExAC (0.986, p < 1e−16). The top ten genes found to be nominally associated with later cancer status by four of 12 association methods(p < 0.05) were MED12, MSH2, BRIP1, PMS1, GATA3, MUC16, FAM175A, EXT2, MLH1 and TGFB1, although these were not statistically significant in permutation testing. However, all 10 gene-level associations had OR < 1 with lower mutation burden in controls compared to cases, which was marginally statistically significant in permutation testing (p = 0.04). Comparing between the three case groups, BBD ER+ cases were closer to controls in mutation profile, while BBD ER− cases were distinct. Notably, the variant burden was significantly higher in controls than in either ER+ or ER− cases. CD45 expression was associated with mutational burden (p < 0.001). Conclusions: Somatic mutations were more frequent in benign breast tissue from women who did not develop cancer, opening questions of clonal diversity or immune-mediated restraint on future cancer development. CD45 expression was positively associated with mutational burden, most strongly in controls. Further studies in both normal and premalignant tissues are needed to better understand the role of somatic gene mutations and their contribution to future cancer development.
AB - Background: Benign breast disease (BBD) is a risk factor for breast cancer (BC); however, little is known about the genetic alterations present at the time of BBD diagnosis and how these relate to risk of incident BC. Methods: A subset of a long-term BBD cohort was selected to examine DNA variation across three BBD groups (42 future estrogen receptor-positive (ER+) BC, 36 future estrogen receptor-negative (ER−) BC, and 42 controls cancer-free for at least 16 years post-BBD). DNA extracted from archival formalin fixed, paraffin-embedded (FFPE) tissue blocks was analyzed for presence of DNA alterations using a targeted panel of 93 BC-associated genes. To address artifacts frequently observed in FFPE tissues (e.g., C>T changes), we applied three filtering strategies based on alternative allele frequencies and nucleotide substitution context. Gene-level associations were performed using two types of burden tests and adjusted for clinical and technical covariates. Results: After filtering, the variant frequency of SNPs in our sample was highly consistent with population allele frequencies reported in 1 KG/ExAC (0.986, p < 1e−16). The top ten genes found to be nominally associated with later cancer status by four of 12 association methods(p < 0.05) were MED12, MSH2, BRIP1, PMS1, GATA3, MUC16, FAM175A, EXT2, MLH1 and TGFB1, although these were not statistically significant in permutation testing. However, all 10 gene-level associations had OR < 1 with lower mutation burden in controls compared to cases, which was marginally statistically significant in permutation testing (p = 0.04). Comparing between the three case groups, BBD ER+ cases were closer to controls in mutation profile, while BBD ER− cases were distinct. Notably, the variant burden was significantly higher in controls than in either ER+ or ER− cases. CD45 expression was associated with mutational burden (p < 0.001). Conclusions: Somatic mutations were more frequent in benign breast tissue from women who did not develop cancer, opening questions of clonal diversity or immune-mediated restraint on future cancer development. CD45 expression was positively associated with mutational burden, most strongly in controls. Further studies in both normal and premalignant tissues are needed to better understand the role of somatic gene mutations and their contribution to future cancer development.
KW - Benign breast disease
KW - Breast cancer risk
KW - CD45 expression
KW - Mutation burden
KW - Somatic mutations
UR - http://www.scopus.com/inward/record.url?scp=85110261838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110261838&partnerID=8YFLogxK
U2 - 10.1186/s12920-021-01032-8
DO - 10.1186/s12920-021-01032-8
M3 - Article
C2 - 34261476
AN - SCOPUS:85110261838
SN - 1755-8794
VL - 14
JO - BMC medical genomics
JF - BMC medical genomics
IS - 1
M1 - 185
ER -