TY - JOUR
T1 - SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium
AU - Kang, Ya'An
AU - Ling, Jianhua
AU - Suzuki, Rei
AU - Roife, David
AU - Chopin-Laly, Xavier
AU - Truty, Mark J.
AU - Chatterjee, Deyali
AU - Wang, Huamin
AU - Thomas, Ryan M.
AU - Katz, Matthew H.
AU - Chiao, Paul J.
AU - Fleming, Jason B.
N1 - Funding Information:
The study was supported by Viragh Family Foundation, and Various Donors in Pancreatic Cancer Research. It was also supported by the NIH/NCI under award number P30CA016672 of the Core Facilities and Services CCSG of Flow Cytometry and Cellular Imaging Facility, Houston. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2014 Kang et al.
PY - 2014/9/29
Y1 - 2014/9/29
N2 - Expression of the cellular adhesion protein N-cadherin is a critical event during epithelial-mesenchymal transition (EMT). The SMAD4 protein has been identified as a mediator of transforming growth factor-β (TGF-β) superfamily signaling, which regulates EMT, but the mechanisms linking TGF-β signaling to N-cadherin expression remain unclear. When the TGF-β pathway is activated, SMAD proteins, including the common mediator SMAD4, are subsequently translocated into the nucleus, where they influence gene transcription via SMAD binding elements (SBEs). Here we describe a mechanism for control of CDH2, the gene encoding N-cadherin, through the canonical TGFβ'SMAD4 pathway. We first identified four previously undescribed SBEs within the CDH2 promoter. Using telomerase immortalized human pancreatic ductal epithelium, we found that TGF-β stimulation prompted specific SMAD4 binding to all four SBEs. Luciferase reporter and SMAD4-knockdown experiments demonstrated that specific SMAD4 binding to the SBE located at 23790 bp to 23795 bp within the promoter region of CDH2 was necessary for TGF-β-stimulated transcription. Expression of N-cadherin on the surface of epithelial cells facilitates motility and invasion, and we demonstrated that knockdown of SMAD4 causes decreased N-cadherin expression, which results in diminished migration and invasion of human pancreatic ductal epithelial cells. Similar reduction of cell motility was produced after CDH2 knockdown. Together, these findings suggest that SMAD4 is critical for the TGF-β-driven upregulation of N-cadherin and the resultant invasive phenotype of human pancreatic ductal epithelial cells during EMT.
AB - Expression of the cellular adhesion protein N-cadherin is a critical event during epithelial-mesenchymal transition (EMT). The SMAD4 protein has been identified as a mediator of transforming growth factor-β (TGF-β) superfamily signaling, which regulates EMT, but the mechanisms linking TGF-β signaling to N-cadherin expression remain unclear. When the TGF-β pathway is activated, SMAD proteins, including the common mediator SMAD4, are subsequently translocated into the nucleus, where they influence gene transcription via SMAD binding elements (SBEs). Here we describe a mechanism for control of CDH2, the gene encoding N-cadherin, through the canonical TGFβ'SMAD4 pathway. We first identified four previously undescribed SBEs within the CDH2 promoter. Using telomerase immortalized human pancreatic ductal epithelium, we found that TGF-β stimulation prompted specific SMAD4 binding to all four SBEs. Luciferase reporter and SMAD4-knockdown experiments demonstrated that specific SMAD4 binding to the SBE located at 23790 bp to 23795 bp within the promoter region of CDH2 was necessary for TGF-β-stimulated transcription. Expression of N-cadherin on the surface of epithelial cells facilitates motility and invasion, and we demonstrated that knockdown of SMAD4 causes decreased N-cadherin expression, which results in diminished migration and invasion of human pancreatic ductal epithelial cells. Similar reduction of cell motility was produced after CDH2 knockdown. Together, these findings suggest that SMAD4 is critical for the TGF-β-driven upregulation of N-cadherin and the resultant invasive phenotype of human pancreatic ductal epithelial cells during EMT.
UR - http://www.scopus.com/inward/record.url?scp=84907482266&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907482266&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0107948
DO - 10.1371/journal.pone.0107948
M3 - Article
C2 - 25264609
AN - SCOPUS:84907482266
SN - 1932-6203
VL - 9
JO - PloS one
JF - PloS one
IS - 9
M1 - e107948
ER -