Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter

X. Xie, X. Zhao, Y. Liu, C. Y.F. Young, D. J. Tindall, K. M. Slawin, D. M. Spencer

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


Tissue-specific transcriptional regulatory elements can increase the safety of gene therapy vectors. Unlike prostate-specific antigen (PSA/hK3), whose expression displays an inverse correlation with prostate cancer grade and stage, human glandular kallikrein 2 (hK2) is upregulated in higher grade and stage disease. Therefore, our goal was to develop a strong and prostate-specific hK2-based promoter for targeted gene therapy. We identified the minimum "full-strength" hK2 enhancer and built transcriptional regulatory elements composed of multiple tandem copies of this 1.2-kb enhancer, fused to the hK2 minimal promoter. Relative to the weak induction of the minimal hK2 promoter by androgen analog (R1881) in androgen receptor (AR)-positive LNCaP cells, transcriptional activity was increased by 25-, 44-, 81-, and 114-fold when one to four enhancers were spliced to the hK2 promoter, respectively. In contrast, the enhancer/promoter elements were inactive in the AR- prostate cancer line PC-3 and in a panel of nonprostate lines, including 293, U87, MCF-7, HuH-7, and HeLa cells. Furthermore, we generated a recombinant adenovirus, ADV.hK2-E3/P-EGFP, expressing enhanced green fluorescent protein (EGFP) under the control of the hK2 triplicate enhancer/promoter, and compared its properties with ADV.CMV-EGFP expressing EGFP under the control of the cytomegalovirus (CMV) enhancer/promoter. Unlike the CMV promoter, the hK2-E3/P promoter was at least 100-fold inducible by R1881 in the adenoviral backbone. Compared with in situ injection of subcutaneous LNCaP tumors with ADV.CMV-EGFP, which led to detectable EGFP expression in tumor, liver, and brain tissue, ADV.hK2-E3/P-EGFP injection led to robust but tumor-restricted EGFP expression. These results suggest that the hk2 multienhancer/promoter should be a powerful novel reagent for safer targeted gene therapy of prostate cancer.

Original languageEnglish (US)
Pages (from-to)549-561
Number of pages13
JournalHuman gene therapy
Issue number5
StatePublished - Mar 23 2001

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics


Dive into the research topics of 'Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter'. Together they form a unique fingerprint.

Cite this