TY - JOUR
T1 - Quantified mechanical properties of the deltoid muscle using the shear wave elastography
T2 - Potential implications for reverse shoulder arthroplasty
AU - Hatta, Taku
AU - Giambini, Hugo
AU - Sukegawa, Koji
AU - Yamanaka, Yoshiaki
AU - Sperling, John W.
AU - Steinmann, Scott P.
AU - Itoi, Eiji
AU - An, Kai Nan
N1 - Funding Information:
Research reported in this publication was supported by the National Institute of Arthritis And Musculoskeletal And Skin Diseases of the National Institutes of Health under Award Number R21 AR065550. We would also like to acknowledge the National Institute of Arthritis and Musculoskeletal and Skin Diseases for the Musculoskeletal Research Training Program T32-AR56950. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no competing interests exist.
Publisher Copyright:
© 2016 Hatta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA). However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE) to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2) according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC). To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation). SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761-0.963 and 0.718-0.947 for ICC(2,1). Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593). Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA.
AB - The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA). However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE) to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2) according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC). To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation). SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761-0.963 and 0.718-0.947 for ICC(2,1). Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593). Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA.
UR - http://www.scopus.com/inward/record.url?scp=84968583499&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84968583499&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0155102
DO - 10.1371/journal.pone.0155102
M3 - Article
C2 - 27152934
AN - SCOPUS:84968583499
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 5
M1 - e0155102
ER -