TY - JOUR
T1 - Protection from radiation-induced DNA single-strand breaks by induction of nuclear metallothionein
AU - Vukovic, V.
AU - Pheng, Say Ry
AU - Stewart, A.
AU - Vik, C. H.
AU - Hedley, D. W.
PY - 2000
Y1 - 2000
N2 - Purpose: To examine the extent to which nuclear metallothionein protects from radiation-induced DNA damage under aerobic and hypoxic conditions. Materials and methods: A semiquantitative fluorescence image analysis method measured the nuclear content of metallothionein (MT) in ME180 and SiHa human squamous cervical carcinoma cell lines under normal growth conditions, and following MT induction by zinc. The extent of initial DNA damage following 60Co irradiation under aerobic and hypoxic conditions was assessed using the alkaline comet assay. Results: Provided that cells were maintained at 37°C, most of the cellular content of MT was in the nucleus. Incubation at 4°C: caused the rapid translocation of MT from the nucleus into the cytoplasm in both cell lines, with no net loss of cellular MT. Baseline nuclear MT levels were about four times greater in ME180 cells, and were much more readily induced by treatment with 100 μM zinc acetate, compared with SiHa cells. Under aerobic conditions, MT induction by zinc resulted in no protection in either of the cell lines. Under hypoxic conditions, however, the number of DNA single-strand breaks in zinc-treated cells was reduced by ~ 40% in ME180, but not in SiHa cells, when compared with non-induced controls. Conclusions: Nuclear MT can exert a significant level of protection from radiation by a mechanism that involves competition with oxygen for DNA radical sites and/or scavenging of free radicals. Because increased MT levels have been reported in hypoxic micro-regions of some solid tumours, this protective mechanism might have clinical relevance. .
AB - Purpose: To examine the extent to which nuclear metallothionein protects from radiation-induced DNA damage under aerobic and hypoxic conditions. Materials and methods: A semiquantitative fluorescence image analysis method measured the nuclear content of metallothionein (MT) in ME180 and SiHa human squamous cervical carcinoma cell lines under normal growth conditions, and following MT induction by zinc. The extent of initial DNA damage following 60Co irradiation under aerobic and hypoxic conditions was assessed using the alkaline comet assay. Results: Provided that cells were maintained at 37°C, most of the cellular content of MT was in the nucleus. Incubation at 4°C: caused the rapid translocation of MT from the nucleus into the cytoplasm in both cell lines, with no net loss of cellular MT. Baseline nuclear MT levels were about four times greater in ME180 cells, and were much more readily induced by treatment with 100 μM zinc acetate, compared with SiHa cells. Under aerobic conditions, MT induction by zinc resulted in no protection in either of the cell lines. Under hypoxic conditions, however, the number of DNA single-strand breaks in zinc-treated cells was reduced by ~ 40% in ME180, but not in SiHa cells, when compared with non-induced controls. Conclusions: Nuclear MT can exert a significant level of protection from radiation by a mechanism that involves competition with oxygen for DNA radical sites and/or scavenging of free radicals. Because increased MT levels have been reported in hypoxic micro-regions of some solid tumours, this protective mechanism might have clinical relevance. .
UR - http://www.scopus.com/inward/record.url?scp=0034082965&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034082965&partnerID=8YFLogxK
U2 - 10.1080/09553000050028904
DO - 10.1080/09553000050028904
M3 - Article
C2 - 10902729
AN - SCOPUS:0034082965
SN - 0955-3002
VL - 76
SP - 757
EP - 762
JO - International Journal of Radiation Biology
JF - International Journal of Radiation Biology
IS - 6
ER -