Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies

Jada Lewis, Dennis W. Dickson

Research output: Contribution to journalReview articlepeer-review

92 Scopus citations


Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles—a principle neuropathological hallmark of Alzheimer’s disease (AD)—as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that tauopathies may be prion-like disorders.

Original languageEnglish (US)
Pages (from-to)27-48
Number of pages22
JournalActa neuropathologica
Issue number1
StatePublished - Jan 1 2016


  • Conformational templating
  • Macropinocytosis
  • Neurofibrillary tangles
  • Prion
  • Propagation
  • Seeding
  • Selective vulnerability
  • Tau

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Clinical Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies'. Together they form a unique fingerprint.

Cite this