Portable closed-loop optogenetic stimulation device

Epsy S. Edward, Abbas Z. Kouzani, Rajas P. Kale, Susannah J Tye

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper presents a closed-loop optogenetic stimulation device to achieve online modulation of neurons. The device is designed to be mountable on small rodents in pre-clinical settings. Considering the size of rodents and the need for portability, a single-piece self-contained device is developed which allows real-time photostimulation based on detected neuronal states. It consists of three components: a neural recorder, a control algorithm, and an optogenetic stimulator. The neural recorder which is realized by analogue circuitry measures the neural signal. The on-off control algorithm analyses the neural signal and controls the stimulation of the target neurons. The optogenetic stimulator performs sampling and digitization of the detected neural signal, runs the control algorithm, and manages the operation of the light source. The configurable neural recorder is capable of 64 dB amplification in the frequency range of 300 Hz to 6 KHz. The outcome of bench testing of the device is reported. The device is portable and headmountable which makes it suitable for use with small rodents in pre-clinical trials.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5250-5253
Number of pages4
Volume2016-October
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Portable closed-loop optogenetic stimulation device'. Together they form a unique fingerprint.

Cite this