Polymeric nanoparticles active against dual-species bacterial biofilms

Jessa Marie V. Makabenta, Jungmi Park, Cheng Hsuan Li, Aritra Nath Chattopadhyay, Ahmed Nabawy, Ryan F. Landis, Akash Gupta, Suzannah Schmidt-Malan, Robin Patel, Vincent M. Rotello

Research output: Contribution to journalArticlepeer-review


Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.

Original languageEnglish (US)
Article number4958
Issue number16
StatePublished - Aug 2 2021


  • Antimicrobials
  • Dual-species biofilms
  • Multidrug resistance
  • Polymeric nanoparticles

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry


Dive into the research topics of 'Polymeric nanoparticles active against dual-species bacterial biofilms'. Together they form a unique fingerprint.

Cite this